
Section II – Part I Preliminary Plans and Engineering Report

Z T 59741

SHEET INDEX

CIVIL CVR C001 C002 C004 C005 C100 C101 C200 C201 C301 C302 C303 C303 C400 COVER SHEET
EXISTING SITE SURVEY
NOTES
TEMPORARY EROSION CONTROL NOTES & DETAILS
TEMPORARY EROSION CONTROL PLAN
SITE PLAN
SITE PLAN
GRADING AND DRAINAGE PLAN
GRADING AND DRAINAGE PLAN
ROAD, SANITARY SEWER AND WATER PLAN AND PROFI
COVIL DETAILS
CIVIL DETAILS

PROFILE PROFILE PROFILE PROFILE PROFILE

PROJECT LOCATION

VICINITY MAP
NOT TO SCALE

411 EAST MAIN STREET SUITE 101 BOZEMAN, MONTANA 59715 PHONE (406) 556-7100 FAX (406) 585-3031 **(29)**

100%

DESIGN SUBMITTAL ECEMBER, 2014

NAME: ERIK GARBERG DATE: DECEMBER, 2014

THE CONTRACTOR SHALL BE RESPONSIBLE TO COMPLY WITH ALL OSHA REGULATIONS FOR WORK UNDER THIS CONTRACT.

PROVIDE POSITIVE DRAINAGE AT ALL TIMES WITHIN THE CONSTRUCTION AREA. DO NOT ALLOW WATER TO POND IN EXCAVATION AREAS AND MAINTAIN ALL EXISTING DRAINAGE PATTERNS.

CUT SLOPE GRADES WITHIN THE PROJECT AREA SHALL NOT EXCEED 3 HORIZONTAL TO 1 VERTICAL. FILL SLOPE GRADES SHALL NOT EXCEED 4 HORIZONTAL TO 1 VERTICAL UNLESS OTHERWISE NOTED.

IN AREAS WHERE NEW FILL IS TO BE PLACED ON SLOPING GROUND, BENCHING THE SURFACE COMPLETED PRIOR TO PLACING THE FILL. BENCHING SHALL BE COMPLETED WHERE SLOPES / THAN 4:1 (HORIZONTAL-VERTICAL).

REMOVE TOPSOIL WITHIN LIMITS OF CONSTRUCTION. STOCKPILE SUFFICIENT TOPSOIL TO SPREAD THROUGHOUT DISTURBED AREAS.

KEEP THE EROSION AND SEDIMENTATION PLAN AND ALL DISCHARGE MONITORING REPORTS ON-SITE FOR THE DURATION OF CONSTRUCTION AND ONE YEAR AFTER CONSTRUCTION COMPLETION.

COORDINATE ALL LAND DISTURBING ACTIVITIES AND CONDUCT SO AS TO MINIMIZE THE SIZE OF THE AREA TO BE EXPOSED AT ANY ONE TIME AND MINIMIZE THE TIME OF EXPOSURE. COORDINATE ALL LAND DISTURBING ACTIVITIES SO AS TO MINIMIZE OFF-SITE SEDIMENTATION DAMAGE. MASS CLEARING AND GRADING OF THE ENTIRE SITE SHALL BE AVOIDED. RESTABILIZE DISTURBED AREAS AS SOON AS POSSIBLE AFTER CONSTRUCTION IS COMPLETED.

UNLESS OTHERWISE INDICATED, ALL MANHOLES, VALVES, AND GRATES SHALL BE ADJUSTED TO FINISHED GRADES.

UNLESS OTHERWISE INDICATED, GRADES SHOWN REPRESENT FINISHED ELEVATIONS.

CLEAR AND GRUB ALL SURFACE VEGETATION, TREES, STUMPS, BRUSH, ETC. REMOVE ALL ORGANIC MATERIAL THAT CANNOT BE COMPACTED INTO A STABLE MASS. ALL BRUSH AND DEBRIS ASSOCIATED WITH CLEARING, STRIPPING OR GRADING SHALL BE REMOVED AND DISPOSED OF OFF SITE.

PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL FIELD VERIFY EXISTING ROAD AND TOP BACK OF CURB OF CURB ELEVATIONS TO ENSURE THAT THEY MATCH PROPOSED GRADES.

AN ELECTRONIC FILE CONTAINING NORTHINGS, EASTINGS, CONSTRUCTION STAKING.

AND ELEVATIONS

ALL DIMENSIONS SHOWN ARE TO TOP BACK OF CURB UNLESS OTHERWISE NOTED

MEET THE CURRENT DEPARTMENT OF JUSTICE ADA STANDARDS FOR ACCESSIBLE DESIGN

PROVIDE POSITIVE DRAINAGE AWAY FROM ALL STRUCTURES

ALL TRENCHING AND EXCAVATION SHALL BE BACKFILLED AND COMPACTED BACK TO THE ORIGINAL GRADE. BACKFILL OUTSIDE THE BUILDING FOOTPRINT SHALL BE COMPACTED TO 95% OF THE PROCTOR DENSITY. COMPACT LANDSCAPE TO 85%.

TERIALS, EQUIPMENT AND FACILITIES REQUIRED FOR TESTING ALL THE CURRENT CITY OF AMSTERDAM & MPWSS.

THE CONTRACTOR SHALL BE RESPONSIBLE FOR IMPORTING AND/OR EXPORTING ALL MATERIAL AS REQUIRED TO PROPERLY GRADE THIS SITE TO THE FINISHED ELEVATIONS SHOWN HEREON IN ACCORDANCE WITH THE APPROVED PLANS AND SPECIFICATIONS.

CALL AT LEAST 2 WORKING DAYS BEFORE YOU DIG 811 OR 1-800-424-5555

THE CONTRACTOR SHALL VERIFY LOCATIONS AND MATERIAL TYPES OF ALL UTILITIES PRIOR TO THE START OF CONSTRUCTION.

NOTIFY THE CITY OF AMSTERDAM AND THE ENGINEER & GALLATIN COUNTY A MINIMUM OF 2 BUSINESS DAYS PRIOR TO CONSTRUCTION.

DO NOT SCALE FROM THE DRAWINGS. VERIFY ALL DIMENSIONS IN THE FIELD. CONTACT THE ENGINEER FOR FURTHER INFORMATION IF DIMENSION NOT PROVIDED. CONTRACTOR TO PROTECT ALL EXISTING UTILITIES, SIGNS, AND EXISTING STRUCTURES. REPAIR BACK TO ORIGINAL CONDITION IF DAMAGE HAS OCCURRED DURING CONSTRUCTION. VERIFY EXISTING CONDITIONS AND LOCATE ALL EXISTING UTILITIES. THE CONTRACTOR SHALL FIELD VERIFY LINE AND GRADE OF EXISTING AND PROPOSED CONNECTIONS WELL IN ADVANCE OF MAKING THE CONNECTION. NOTIFY ENGINEER OF ANY UNFORESEEN CONDITIONS. THE MINIMUM DEPTH OF BURY TO THE TOP OF PIPE FOR WATER LINES IS $6.5\,\mathrm{FT.}$

CONTROL THE CITY OF AMSTERDAM WATER SUPPLY SHALL BE

CONSTRUCTION NOTES:

UNLESS OTHERWISE INDICATED, ALL CONSTRUCTION LAYOUT AND STAKING SHALL BE PERFORMED UNDER THE RESPONSIBLE CHARGE OF A MONTANA LICENSED LAND SURVEYOR. NO UTILITY TRENCHES SHALL BE LEFT OPEN OVERNIGHT. ALL SUCH TRENCHES SHALL BE CLOSED BEFORE THE END OF THE WORKDAY OR FENCED OFF IN A SECURE MANNER. ALL PIPES SHALL BE BEDDED PER CURRENT CITY OF AMSTERDAM & MPWSS. ALL SERVICES AND CONNECTIONS SH IALL CONFORM TO THE CURRENT GALLATIN COUNTY & MPWSS.

ESTABLISH EROSION CONTROL MEASURES AT THE BEGINNING OF CONSTRUCTION AND MAINTAIN DURING THE ENTIRE LENGTH OF CONSTRUCTION. AREAS WHICH ARE SUBJECT TO SEVERE EROSION AND OFF-SITE AREAS WHICH ARE ESPECIALLY VULNERABLE TO DAMAGE FROM EROSION AND/OR SEDIMENTATION ARE TO BE IDENTIFIED AND RECEIVE ADDITIONAL EROSION CONTROL MEASURES.

THE LOCATION AND DESCRIPTION OF ALL SHOWN UTILITIES ARE COMPILED FROM AVAILABLE RECORDS AND FIELD SURVEYS. THE ENGINEER DOES NOT GUARANTEE THE ACCURACY NOR COMPLETENESS OF THESE UTILITIES.

THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR LOCATING ALL EXISTING UTILITY INSTALLATIONS ABOVE AND BELOW GROUND IN ADVANCE OF THE PROJECT BY CONTACTING THEIR RESPECTIVE OWNERS. ALL COSTS RELATED TO CROSSING EXISTING UTILITIES, EXPLORATORY EXCAVATION AND OTHER METHODS OF LOCATING EXISTING UTILITIES ARE INCIDENTAL AND SHALL NOT BE PAID SEPARATELY, BUT SHALL BE MERGED WITH APPLICABLE BID ITEMS. NOT ALL UTILITIES ARE IDENTIFIED ON THE PLANS.

CONTRACTOR SHALL BE RESPONSIBLE FOR STORM WATER QUALITY DURING CONSTRUCTION.
CONTRACTOR SHALL COMPLY WITH ALL REQUIREMENTS OF MONTANA POLLUTANT DISCHARGE
ELIMINATION SYSTEM (MPDES), INCLUDING THE PREPARATION AND MAINTENANCE OF A STORM WATER
POLLUTION AND PREVENTION PLAN (SWPPP) THROUGHOUT THE DURATION OF THIS PROJECT. INSPECTION AND TESTING:

THE CONTRACTOR SHALL BE RESPONSIBLE FOR ENSURING THAT ALL REQUIRED AND NECESSARY INSPECTIONS ARE PERFORMED BY AN INDEPENDENT AND AUTHORIZED INSPECTION AGENCY PRIOR TO PROCEEDING WITH SUBSEQUENT WORK WHICH COVERS OR IS DIRECTLY DEPENDENT ON THE WORK TO BE INSPECTED. FAILURE TO OBTAIN NECESSARY INSPECTION AND RELATED TESTING SHALL RESULT IN THE CONTRACTOR BEING FULLY RESPONSIBLE FOR PROBLEMS FROM UN-INSPECTED WORK. ALL INSPECTION REQUIREMENTS SHALL FOLLOW MPWSS GUIDELINES AND THE CURRENT UTILITY SOLUTIONS.

SHOP AND FABRICATION DRAWINGS:

CONTRACTOR SHALL PERFORM ALL WORK NECESSARY TO COMPLETE THE PROJECT IN ACCORDANCE WITH THE APPROVED CONSTRUCTION DRAWINGS INCLUDING INCIDENTALS THAT MAY BE REQUIRED TO PROVIDE A COMPLETE PROJECT.

UPON COMPLETION OF CONSTRUCTION, THE CONTRACTOR SHALL SUBMIT A CLEAN SET OF FIELD DRAWINGS CONTAINING ALL AS BUILT INFORMATION TO THE ENGINEER.

IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO APPLY AND SECURE ALL NECESSARY PERMITS REQUIRED FOR THE COMPLETION OF THE PROJECT.

TRAFFIC, BOTH VEHICULAR AND PEDESTRIAN SHALL BE PROTECTED BY EFFECTIVE BARRICADES AND SIGNS IN ACCORDANCE WITH MUTCD GUIDANCE. EFFECTIVE LIGHTING OF OBSTRUCTIONS SHALL BE PROVIDED AT NIGHT.

ALL SIGNS SHALL BE FURNISHED NEW DEVICES, AND ERECTED PER MONTAN SPECIFIED. SHOP DRAWINGS SHALL B ALL SIGNS PRIOR TO PURCHASE AND I ALL PAVEMENT MARKINGS SHALL BE PER THE APPROVED PROJECT SPECIFICATIONS VPER THE CURRENT MANUAL ON UNIFORM TRAFFIC CONTROL VA PUBLIC WORK STANDARDS, 6TH EDITION, AT THE LOCATIONS BE SUBMITTED TO THE ENGINEER FOR REVIEW AND APPROVAL FOR INSTALLATION.

CONTRACTION JOINTS SHALL BE PLANMINIMUM WIDTH OF 1/8". SUBGRADE AND BASE COURSE MATEIN THE GEOTECHNICAL REPORT. L BE PLACED AT ALL PC'S, PT'S, CURB RETURN AND AT NO MORE MATERIAL SHALL EXTEND THROUGH THE FULL DEPTH OF THE CURB NS INDICATED. FINAL GRADES SHALL BE ADJUSTED TO BEST MATCH PROVAL FROM ENGINEER. RIAL AND COMPACTION SHALL CONFORM TO PROVISIONS PROVIDED

ALL MATERIAL GENERATED FROM DEMOLITION ACTIVITIES SHALL LEGALLY BE DISPOSED OF AT THE CONTRACTORS EXPENSE. AN APPROPRIATE DUMP SITE SHALL BE NOMINATED PRIOR TO THE START OF CONSTRUCTION.

ALL WORK AND MATERIALS SHALL BE IN COMPLETE ACCORDANCE WITH THE MONTANA PUBLIC WORKS STANDARD SPECIFICATIONS (MPWSS), DEQ 8 MONTANA STANDARDS FOR SUBDIVISION STORM DRAINAGE, PROJECT SPECIFIC SPECIFICATIONS, AND ALL OTHER GOVERNING AGENCY'S STANDARDS.

THE CONTRACTOR SHALL CONTROL DUST IN ACCORDANCE WITH REGULATIONS OF LOCAL AIR POLLUTION CONTROL AUTHORITY.

THE CONTRACTOR SHALL PROTECT ADJACENT PROPERTIES, PUBLIC AND PRIVATE, AT ALL TIMES DURING CONSTRUCTION.

NOT FOR CONSTRUCTION - PRELIMINARY DESIGN

CONSTRUCTION **DOCUMENTS**

VILLAGE AT AMSTERDAM 58 LOT SUBDIVISION

REVISIONS

1. DESIGN, CONSTRUCT, AND PHASE CUT AND FILL SLOPES IN A MANNER THAT WILL MINIMIZE EROSION. APPLICABLE PRACTICES INCLUDE, BUT ARE NOT LIMITED TO, REDUCING CONTINUOUS LENGTH OF SLOPE WITH TERRACING AND DIVERSIONS, REDUCING SLOPE STEEPNESS, AND ROUGHENING SLOPE SURFACES (e.g., TRACK WALKING).

2. OFF-SITE STORMWATER (RUN-ON) OR GROUNDWATER SHALL BE DIVERTED AWAY FROM SLOPES AND DISTURBED AREAS WITH INTERCEPTOR DIKES, PIPES, AND/OR SWALES. OFF-SITE STORMWATER SHOULD BE MANAGED SEPARATELY FROM STORMWATER GENERATED ON THE SITE.

3. DO NOT CLEAR AND GRUB SLOPES GREATER THAN 4(HORIZONTAL):1(VERTICAL) UNLESS FURTHER WORK RESULTING IN STABILIZATION OF THE SLOPES TO BE CLEARED AND GRUBBED IS SCHEDULED FOR LESS THAN ONE WEEK FROM COMPLETION OF CLEARING AND GRUBBING OR OTHER TEMPORARY STABILIZATION MEASURES ARE PUT IN PLACE.

4. EXCAVATED MATERIAL SHALL BE PLACED ON THE UPHILL SIDE OF TRENCHES, CONSISTENT WITH SAFETY AND SPACE CONSIDERATIONS.

5. CHECK DAMS SHALL BE PLACED AT REGULAR INTERVALS WITHIN CONSTRUCTED CHANNELS THAT ARE CUT DOWN A SLOPE.

THIS STORMWATER POLLUTION PREVENTION PLAN IS PROVIDED IN ACCORDANCE WITH THE TERMS OF THE MONTANA POLLUTANT DISCHARGE ELIMINATION SYSTEM (MPDES) PERMIT FOR CONSTRUCTION ACTIVITIES FOR THIS PROJECT. THE CONTRACTOR IS ADVISED THAT THE PROJECT AREA DRAINS TO WETLANDS AND/OR STATE WATERS AND THAT THE CONTRACTOR IS RESPONSIBLE TO PROTECT THE RECEIVING WATERS FROM DELETERIOUS EFFECTS OF CONSTRUCTION. THE CONTRACTOR IS REQUIRED TO HAVE A COPY OF THE NPDES PERMIT(IF PROJECT DISTURBANCE IS GREATER THAN 1 ACRE) AS WELL AS THE SWPPP ON SITE AT ALL TIMES.

THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING THE EROSION CONTROL MEASURES SHOWN OR DESCRIBED IN THE CONTRACT DOCUMENTS AND ANY ADDITIONAL MEASURES THAT MAY BE REQUIRED BY THE CONTRACTORS MEANS AND METHODS OF CONSTRUCTION AS NEEDED TO CONTROL EROSION AND SEDIMENT AT THE CONSTRUCTION SITE AND TO PREVENT VIOLATION OF SURFACE WATER QUALITY, GROUND WATER QUALITY, OR SEDIMENT MANAGEMENT STANDARDS. EROSION CONTROL MEASURES SHALL BE MAINTAINED THROUGHOUT THE COURSE OF CONSTRUCTION AND UNTIL ALL DISTURBED EARTH IS STABILIZED IN FINISH GRADES. THE FOLLOWING ITEMS ARE BEST MANAGEMENT PRACTICES (BMPS) WHICH MAY BE APPLIED TO COMPLY WITH THE SWPPP. REFER TO THESE PLANS FOR DRAWINGS OF THE PROJECT, SITE MAP, CONVEYANCE SYSTEMS, EROSION AND SEDIMENT CONTROL MEASURES, AND EROSION AND SEDIMENT CONTROL DETAILS.

PRESERVE VEGETATION/MARK CLEARING LIMITS

1. PRIOR TO BEGINNING LAND DISTURBING ACTIVITIES, INCLUDING CLEARING AND GRADING, CLEARLY MARK ALL CLEARING LIMITS AND TREES THAT ARE TO BE PRESERVED WITHIN THE CONSTRUCTION AREA AS SHOWN ON THE DRAWINGS.

2. SILT FENCE, GEOTEXTILE ENCASED BARRIERS, CONSTRUCTION FENCE, ORANGE PLASTIC FENCE, OR OTHER APPROVED MEASURES MAY BE USED TO MARK THE CLEARING LIMITS.

3. THE DUFF LAYER, NATIVE TOPSOIL, AND NATURAL VEGETATION SHALL BE RETAINED IN AN UNDISTURBED STATE TO THE MAXIMUM DEGREE PRACTICABLE.

ESTABLISH CONSTRUCTION ACCESS

1. WHEN POSSIBLE, LIMIT CONSTRUCTION VEHICLE ACCESS AND EXIT TO ONE ROUTE.
2. ALL ACCESS/EXIT POINTS SHALL BE STABILIZED WITH QUARRY SPALLS, CRUSHED ROCK OR OTHER EQUIVALENT BMP, TO MINIMIZE THE TRACKING OF SEDIMENT ONTO PUBLIC ROADS.
3. WHEEL WASH OR TIRE BATHS SHALL BE LOCATED ON SITE, IF THE STABILIZED CONSTRUCTION ENTRANCE IS NOT EFFECTIVE IN PREVENTING SEDIMENT FROM BEING TRACKED ONTO PUBLIC ROADS.
4. IF SEDIMENT IS TRACKED OFF SITE, PUBLIC ROADS SHALL BE CLEANED THOROUGHLY AT THE END OF EACH DAY, OR MORE FREQUENTLY DURING WET WEATHER. SEDIMENT SHALL BE REMOVED FROM ROADS BY SHOVELING OR PICKUP SWEEPING AND SHALL BE TRANSPORTED TO A CONTROLLED SEDIMENT DISPOSAL AREA.
5. STREET WASHING IS ALLOWED ONLY AFTER SEDIMENT IS REMOVED AS DESCRIBED ABOVE. STREET WASH WASTEWATER SHALL BE CONTROLLED BY PUMPING BACK ON SITE OR OTHERWISE BE PREVENTED FROM FROM DISCHARGING INTO SYSTEMS TRIBUTARY TO WATERS OF THE STATE.

CONTROL FLOW RATES

1. PROPERTIES AND WATERWAYS DOWNSTREAM FROM DEVELOPMENT SITES SHALL BE PROTECTED FROM EROSION DUE TO INCREASES IN THE VELOCITY AND PEAK VOLUMETRIC FLOW RATE OF STORMWATER RUNOFF FROM THE PROJECT SITE, AS REQUIRED BY LOCAL PLAN APPROVAL AUTHORITY.

2. WHERE NECESSARY TO COMPLY WITH #1, STORMWATER RETENTION OR DETENTION FACILITIES SHALL BE CONSTRUCTED AS ONE OF THE FIRST STEPS IN GRADING. DETENTION FACILITIES SHALL BE FUNCTIONAL PRIOR TO CONSTRUCTION OF SITE IMPROVEMENTS (e.g. IMPERVIOUS SURFACES).

3. IF PERMANENT INFILTRATION PONDS ARE USED FOR FLOW CONTROL DURING CONSTRUCTION, THESE FACILITIES SHALL BE PROTECTED FROM SILTATION DURING THE CONSTRUCTION PHASE.

CONTROL DEWATERING

1. FOUNDATION, VAULT, AND TRENCH DE-WATERING WATER, WHICH HAVE SIMILAR CHARACTERISTICS TO STORMWATER RUNOFF AT THE SITE, SHALL BE DISCHARGED INTO A CONTROLLED CONVEYANCE SYSTEM PRIOR TO DISCHARGE TO A SEDIMENT TRAP OR SEDIMENT POND.

2. CLEAN, NON-TURBID DE-WATERING WATER, SUCH AS WELL-POINT GROUND WATER, CAN BE DISCHARGED TO SYSTEMS TRIBUTARY TO, OR DIRECTLY INTO SURFACE WATERS OF THE STATE, AS SPECIFIED IN THE STABILIZE CHANNELS AND OUTLETS SECTION, PROVIDED THE DE-WATERING FLOW DOES NOT CAUSE EROSION OR FLOODING OF RECEIVING WATERS. CLEAN DE-WATERING WATER SHOULD NOT BE ROUTED THROUGH STORMWATER SEDIMENT PONDS.

3. OTHER DE-WATERING DISPOSAL OPTIONS MAY INCLUDE:

a)INFILTRATION.

b) USE OF A SEDIMENTATION BAG (DIRTBAG OR APPROVED EQUAL) WITH OUTFALL TO A DITCH OR SWALE FOR SMALL VOLUMES OF LOCALIZED DE-WATERING.
c) TRANSPORT OFF SITE IN A VEHICLE, SUCH AS A VACUUM FLUSH TRUCK, FOR LEGAL DISPOSAL IN A MANNER THAT DOES NOT POLLUTE STATE WATERS.
d)ECOLOGY APPROVED ON-SITE CHEMICAL TREATMENT OR OTHER SUITABLE TREATMENT TECHNOLOGIES.
e) SANITARY SEWER DISCHARGE WITH LOCAL SEWER DISTRICT APPROVAL, IF THERE IS NO OTHER OPTION.

REPORT FOR ADDITIONAL

INSTALL SEDIMENT CONTROLS

1. STORMWATER RUNOFF FROM DISTURBED AREAS SHALL PASS THROUGH A SEDIMENT POND OR OTHER APPROPRIATE SEDIMENT REMOVAL BMP, PRIOR TO LEAVING THE CONSTRUCTION SITE OR PRIOR TO DISCHARGE TO AN INFILTRATION FACILITY. RUNOFF FROM FULLY STABILIZED AREAS MAY BE DISCHARGED WITHOUT A SEDIMENT REMOVAL BMP, BUT SHALL MEET FLOW CONTROL PERFORMANCE AS STATED IN THE CONTROL FLOW RATES SECTION. THE PONDS SHALL BE MAINTAINED AT A LEVEL THAT PREVENTS TURBID RUNOFF FROM LEAVING THE SITE AT ALL TIMES. IN THE EVENT THE PONDS APPROACH CAPACITY THE TURBID RUNOFF MAY BE DISPERSED ON SITE (TO A PREDETERMINED AND DESIGNATED LOCATION). IF DISPERSION IS NOT PRACTICAL DUE TO SITE CONDITIONS, THE TURBID RUNOFF SHALL BE PUMPED AND TRUCKED OFF SITE TO A PREDETERMINED AND DESIGNATED LOCATION.

2. SEDIMENT CONTROL BMPs (SEDIMENT PONDS, TRAPS, FILTERS, ETC.) SHALL BE CONSTRUCTED AS ONE OF THE FIRST STEPS IN GRADING. THESE BMPs SHALL BE FUNCTIONAL BEFORE OTHER LAND DISTURBING ACTIVITIES TAKE PLACE.

MAINTAIN BMPS

1. INSPECT EROSION CONTROL DEVICES ON A WEEKLY BASIS AND AFTER EACH RUNOFF EVENT. MAKE NECESSARY REPAIRS AND MAINTENANCE TO ENSURE CONTINUED PERFORMANCE OF EROSION AND SEDIMENT CONTROLS.

2. WHEN SEDIMENT ACCUMULATION IN SEDIMENTATION STRUCTURES, OTHER THAN INLET PROTECTION DEVICES, HAS REACHED A POINT ONE-THIRD DEPTH OF SEDIMENT STRUCTURE OR DEVICE, OR IF FLOW THROUGH THE DEVICE IS REDUCED BY MORE THAN ONE-THIRD CAPACITY, THE CONTRACTOR SHALL REMOVE AND REPLACE DISPOSABLE DEVICES OR CLEAN AND DISPOSE OF SEDIMENT.

3. TEMPORARY EROSION AND SEDIMENT CONTROL BMPs SHALL BE REMOVED WITHIN 30 DAYS AFTER FINAL SITE STABILIZATION IS ACHIEVED OR AFTER THE TEMPORARY BMPs ARE NO LONGER NEEDED. TRAPPED SEDIMENT SHALL BE REMOVED OR STABILIZED.

STABILIZED CONSTRUCTION ENTRANCE

INSTALL DRIVEWAY
CULVERT IF THERE
IS ROADSIDE DITCH
PRESENT.

4" TO 8" QUARRY SPALLS

GEOTEXTILE

PROVIDE FULL WIDTH OF INGRESS/EGRESS AREA (15' MIN.)

STABILIZE SOILS

1. EXPOSED AND UNWORKED SOILS SHALL BE STABILIZED BY APPLICATION OF EFFECTIVE BMPS THAT PREVENT EROSION, APPLICABLE BMPS INCLUDE, BUT ARE NOT LIMITED TO: TEMPORARY AND PERMANENT SEEDING, SODDING, MULCHING, PLASTIC COVERING, EROSION CONTROL FABRICS AND MATTING, SOIL APPLICATION OF POLYACRYLAMIDE (PAM), THE EARLY APPLICATION OF GRAVEL BASE ON AREAS TO BE PAVED AND DUST CONTROL.

2. NO SOILS SHALL REMAIN EXPOSED AND UNWORKED FOR MORE THAN THE TIME PERIODS SET FORTH BELOW TO PREVENT EROSION:

DURING THE WET SEASON (OCTOBER 1 - APRIL 30): 2 DAYS

3. SOILS SHALL BE STABILIZED AT THE END OF THE SHIFT BEFORE A HOLIDAY OR WEEKEND IF NEEDED BASED ON THE WEATHER FORECAST.

4. SOIL STOCKPILES SHALL BE STABILIZED FROM EROSION, PROTECTED WITH SEDIMENT TRAPPING MEASURES, AND WHERE POSSIBLE, BE LOCATED AWAY FROM STORM DRAIN UNLETS, WATERWAYS, AND DRAINAGE CHANNELS.

5. HYDROSEED AS SOON AS PRACTICAL ALL DISTURBED AREAS NOT INDICATED IN THE CONTRACT DOCUMENTS FOR OTHER PERMANENT STABILIZATION MEASURES AS SOON AS PRACTICAL ALL DISTURBED AREAS NOT INDICATED IN THE CONTRACT DAY OR PROTECTION OF OTHER PERMANENT STABILIZATION MEASURES AS SOON AS PRACTICAL AFTER ESTABLISHMENT OF UNIFORM GRASS GROWTH OR INSTALLATION OF OTHER PERMANENT STABILIZATION MEASURES. REPAIR ANY DAMAGE TO STABILIZED SURFACES AFTER REMOVAL OF TESC MEASURES.

MANAGE THE PROJECT

1. PHASING OF CONSTRUCTION

a) MINIMIZE DISTURBANCE AND COMPACTION OF NATIVE SOILS EXCEPT AS

a) MINIMIZE DISTURBANCE AND COMPACTION OF NATIVE SOILS EXCEPT AS

NECESSARY FOR THE CURRENT PHASE OF WORK.

b) STABILIZE AREAS IMMEDIATELY AFTER WORK HAS BEEN FINISHED FOR THAT PHASE.

2. COORDINATE WITH OTHER CONTRACTORS.

3. INSPECTION AND MONITORING:

a) A CERTIFIED PROFESSIONAL IN EROSION AND SEDIMENT CONTROL (AS REQUIRED BY THE NPDES) SHALL BE IDENTIFIED AT THE PRE- CONSTRUCTION MEETING AND SHALL BE ON-SITE OR ON-CALL AT ALL TIMES. EMERGENCY CONTACT INFORMATION SHALL BE KEPT ON-SITE. CERTIFICATION MAY BE THROUGH ANY EQUIVALENT LOCAL OR NATIONAL CERTIFICATION AND/OR TRAINING PROGRAM.

b) IF INSPECTION AND/OR WATER MONITORING OF SITE RUNOFF REVEALS THAT THE BMPs IDENTIFIED IN THE CONSTRUCTION SWPPP ARE INADEQUATE, THE CONTRACTOR SHALL IMMEDIATELY ADD BMPs TO THE SWPPP AS NECESSARY.

4. THE CONSTRUCTION SWPPP SHALL BE MODIFIED BY THE CONTRACTOR'S TESC RECORD WHENEVERS, AND INSPECTION SHALL BECOME PART OF THE SWPPP. THE CONSTRUCTION SWPPP SHALL BE MODIFIED BY THE CONTRACTOR'S TESC RECORD WHENEVER THERE IS A SIGNIFICANT CHANGE IN THE DESIGN, CONSTRUCTION, OPERATION, OR MAINTENANCE OF ANY BMP.

NOTE: COVERAGE UNDER THE GENERAL PERMIT IS REQUIRED FOR PROJECTS DISTURBING ONE OR MORE ACRES. THE DISTURBANCE FOR THIS PROJECT EQUALS 30,000 SF ±, WHICH IS LESS THAN THE 43,560 SF MINIMUM.

PROTECT DRAIN INLETS

1. ALL STORM DRAIN INLETS MADE OPERABLE DURING CONSTRUCTION AND ALL INLETS WITHIN 200' DOWNSTREAM OF THE PROJECT SITE SHALL BE PROTECTED WITH CATCH BASIN FILTERS SO THAT STORMWATER RUNOFF DOES NOT ENTER THE CONVEYANCE SYSTEM WITHOUT FIRST BEING FILTERED OR TREATED TO REMOVE SEDIMENT. CATCH BASIN FILTERS IN THE ROADWAY WILL BE OIL/SEDIMENT FILTERS AND CATCH BASIN FILTERS OUTSIDE OF THE ROADWAY WILL BE SEDIMENT FILTERS.

2. APPROACH ROADS SHALL BE KEPT CLEAN. SEDIMENT AND STREET WASH WATER SHALL NOT BE ALLOWED TO ENTER STORM DRAINS WITHOUT PRIOR AND ADEQUATE TREATMENT.

3. INLET PROTECTION DEVICES SHOULD BE CLEANED OR REMOVED AND REPLACED WHEN SEDIMENT HAS FILLED ONE-THIRD OF THE AVAILABLE STORAGE.

STRAW WATTLE MUST BE PLACED ALONG SLOPE CONTOURS

3'-4' (1.2m)

. , K

- ADJACENT ROLLS SHALL TIGHTLY ABUT

 \triangleright

A

STAPLE DETAIL

REVISIONS

STABILIZE CHANNELS AND OUTLETS

1. TEMPORARY ON-SITE CONVEYANCE CHANNELS REQUIRED BY THE CONTRACTOR'S MEANS AND METHODS SHALL BE DESIGNED, CONSTRUCTED, AND STABILIZED TO HANDLE THE PEAK 10 MINUTE VELOCITY OF FLOW FROM A 10-YEAR, 24-HOUR FREQUENCY STORM FOR THE DEVELOPED CONDITION. IN LIEU OF DESIGN, THE CONTRACTOR MAY ELECT TO LINE TEMPORARY CHANNELS WITH EROSION CONTROL MAT AT CONTRACTOR'S EXPENSE.

2. STABILIZATION, INCLUDING ARMORING MATERIAL, ADEQUATE TO PREVENT EROSION OF OUTLETS, ADJACENT STREAM BANKS, SLOPES, AND DOWNSTREAM REACHES SHALL BE PROVIDED AT THE OUTLETS OF ALL CONVEYANCE SYSTEMS.

CONTROL POLLUTANTS

1. ALL POLLUTANTS, INCLUDING WASTE MATERIALS AND DEMOLITION DEBRIS, THAT OCCUR ONSET SHALL BE HANDLED AND DISPOSED OF IN A MANNER THAT DOES NOT CAUSE CONTAMINATION OF STORMWATER.

2. COVER, CONTAINMENT, AND PROTECTION FROM VANDALISM SHALL BE PROVIDED FOR ALL CHEMICALS, LIQUID PRODUCTS, PETROLEUM PRODUCTS, AND OTHER MATERIALS THAT HAVE THE POTENTIAL TO POSE A THREAT TO HUMAN HEALTH OR THE ENVIRONMENT. ON-SITE FUELING TANKS SHALL INCLUDE SECONDARY CONTAINMENT.

3. MAINTENANCE, FUELING, AND REPAIR OF HEAVY EQUIPMENT AND VEHICLES SHALL BE CONDUCTED USING SPILL PREVENTION AND CONTROL MEASURES.
CONTAMINATED SURFACES SHALL BE CLEANED IMMEDIATELY FOLLOWING ANY SPILL INCIDENT.

4. WHEEL WASH OR TIRE BATH WASTEWATER SHALL BE DISCHARGED TO A SEPARATE ON-SITE TREATMENT SYSTEM OR TO THE SANITARY SEWER WITH LOCAL SEWER DISTRICT APPROVAL.

5. APPLICATION OF FERTILIZERS AND PESTICIDES, SHALL BE CONDUCTED IN A MANNER AND AT APPLICATION RATES THAT WILL NOT RESULT IN LOSS OF CHEMICAL TO STORMWATER RUNOFF. MANUFACTURERS' LABEL REQUIREMENTS FOR APPLICATION RATES AND PROCEDURES SHALL BE FOLLOWED.

6. BMPs SHALL BE USED TO PREVENT OR TREAT CONTAMINATION OF STORMWATER RUNOFF BY PH MODIFYING SOURCES. THESE SOURCES INCLUDE, BUT ARE NOT LIMITED TO: BULK CEMENT, CEMENT KILN DUST, FLY ASH, NEW CONCRETE WASHING AND SAWING, EXPOSED AGGREGATE PROCESSES, DENATURING CONCRETE GRINDING AND MATER WASHERS SHALL OBTAIN WRITTEN APPROVAL FROM ECOLOGY PRIOR TO USING CHEMICAL TREATMENT, OTHER THAN CARBON DIOXIDE OR DRY ICE TO ADJUST PH.

DRIVEWAY SHALL MEET THE REQUIREMENTS OF THE PERMITTING AGENCY.

LIVE STAKE STRAW WATTLE INSTALLATION REQUIRES THE PLACEMENT AND SECURE STAKING OF THE ROLL IN A TRENCH, 3" \times 5" (75-125mm) DEEP, DUG ON CONTOUR. RUNOFF MUST NOT BE ALLOWED TO RUN UNDER OR AROUND ROLL. FIBER ROLL INSTALLATION STRAW WATTLES 1" x 1" STAKE NOT TO SCALE

SEDIMENT, ORGANIC MATTER, AND NATIVE SEEDS ARE CAPTURED BEHIND THE WATTLE

POST SPACING MAY BE INCREASED TO 8' IF WIRE BACKING IS USED ABRIC SHALL BE USING STAPLES, UVALENT TO POSTS BURY BOTTOM OF FILTER
MATERIAL IN 6" x 6"

(4"x 4" MIN.) TRENCH.
BACKFILL WITH NATIVE SOIL C
3/4"-1 1/2" WASHED GRAVEL. 2" x 2" WOOD POSTS, STEEL FENCE POSTS, OR EQUIVALENT

CONCRETE WASHOUT SECTION A-A OR METAL STAKES (2 PER BALE) GRADE" WITH STRAW -10 MIL PLASTIC LINING 2. THE CONCRETE WASHOUT SIGN SHALL BE INSTALLED WITHIN 30 FT OF THE TEMPORARY CONCRETE WASHOUT FACILITY. LAYOUT DETERMINED PLYWOOD 48" X 24" PAINTED WHITE -WOOD POST 3" X 3" X 8' BLACK LETTERS 6" HEIGHT

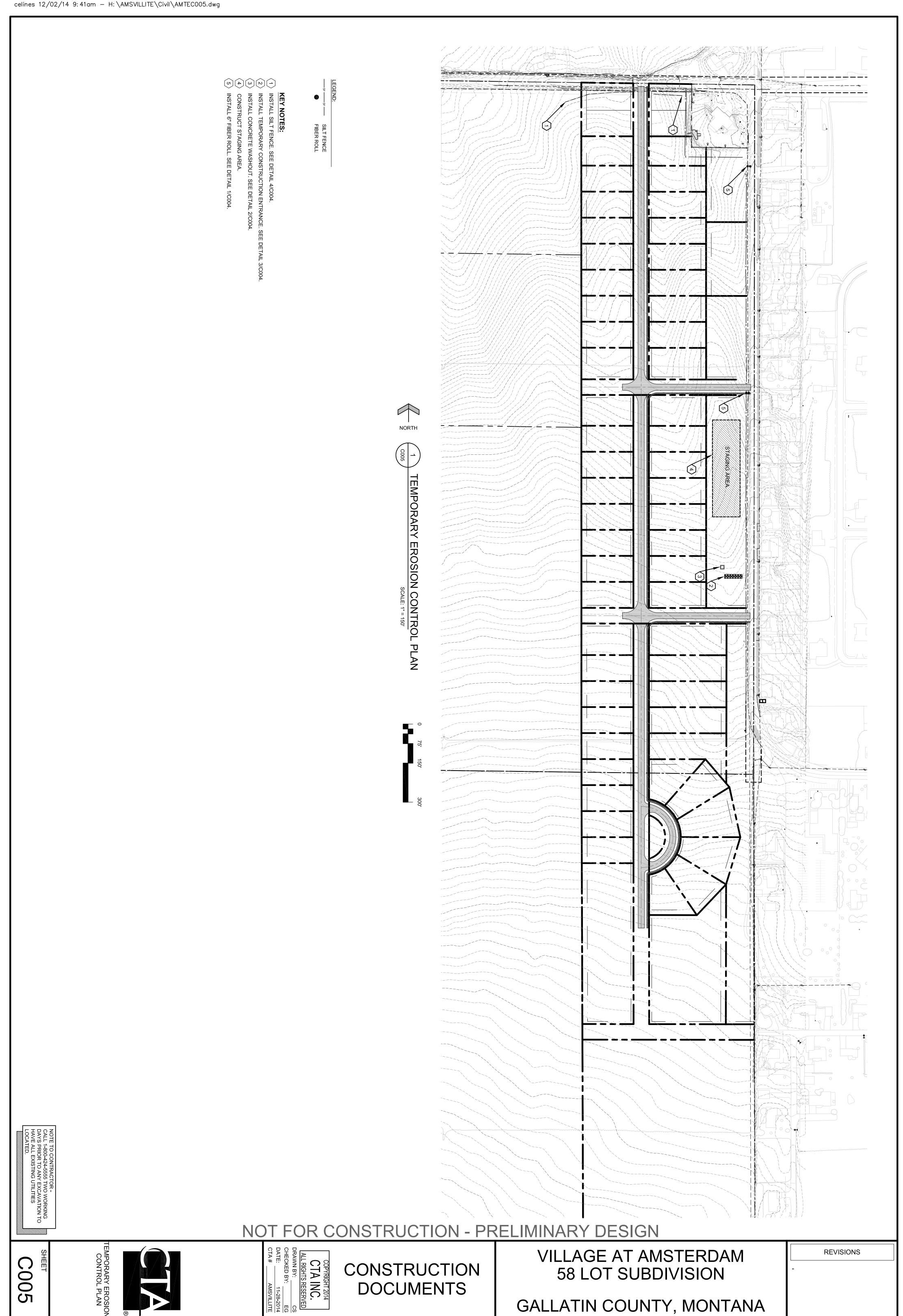
NOT FOR CONSTRUCTION - PRELIMINARY DESIGN

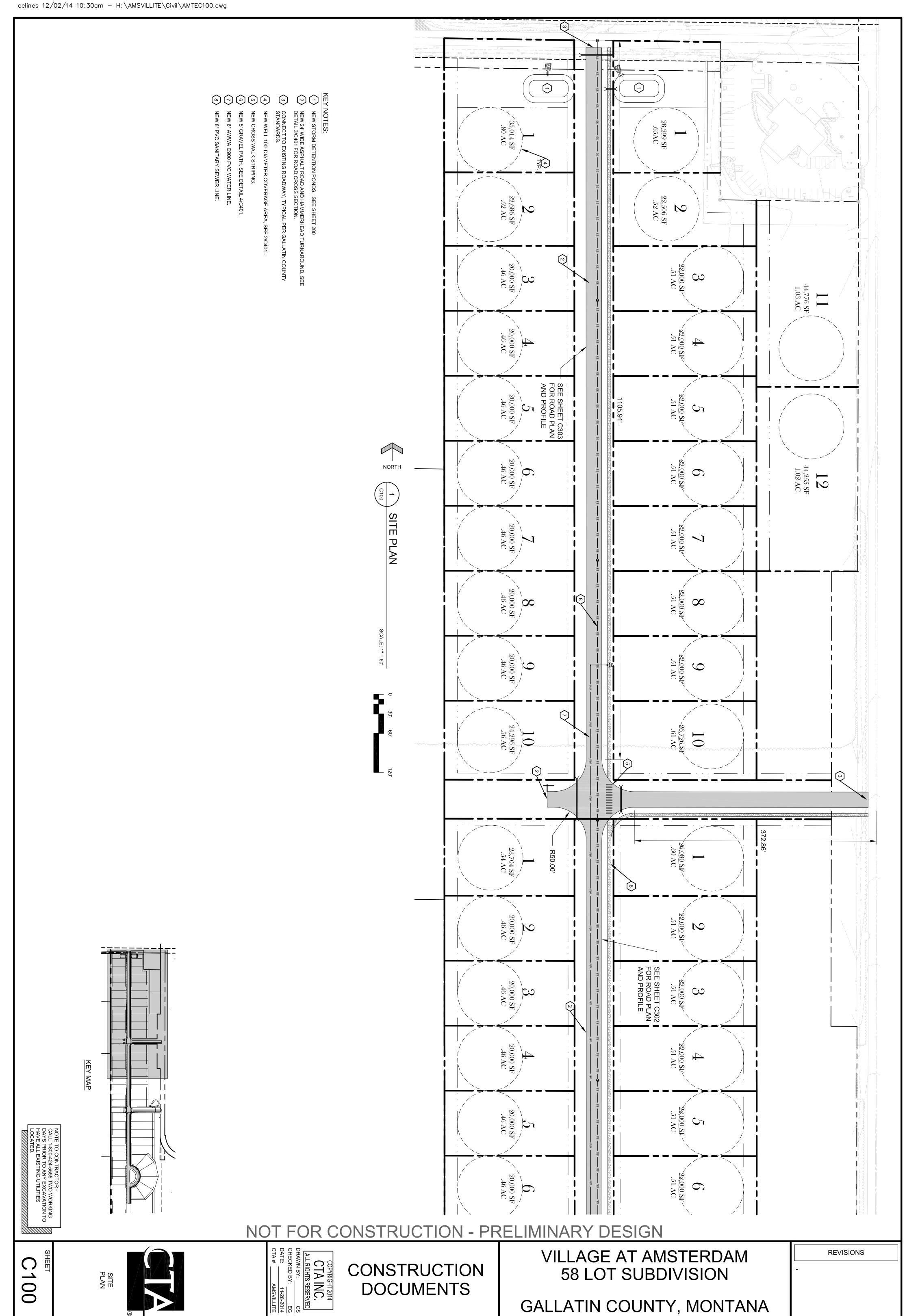
MIN.

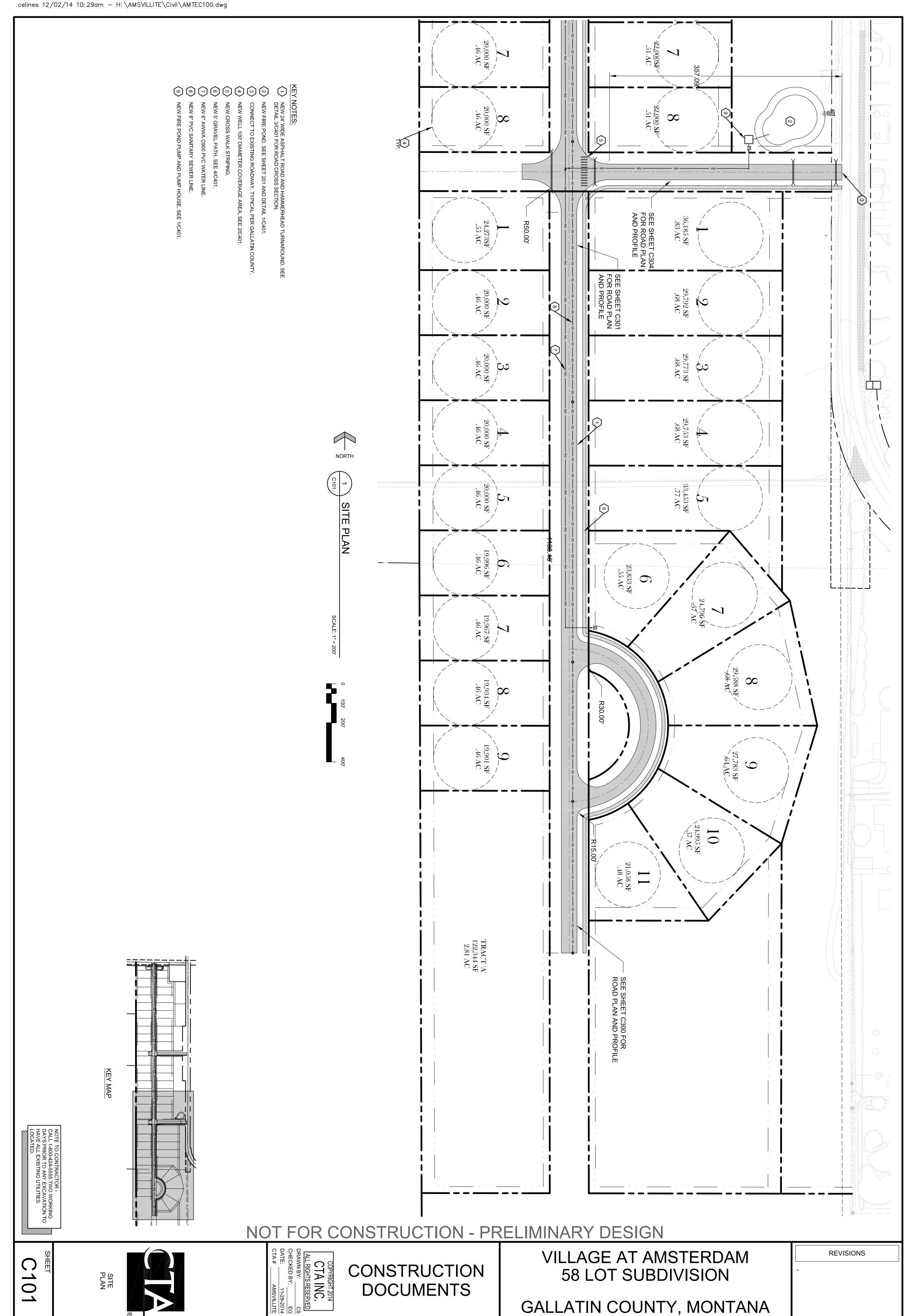

CONSTRUCTION **DOCUMENTS**

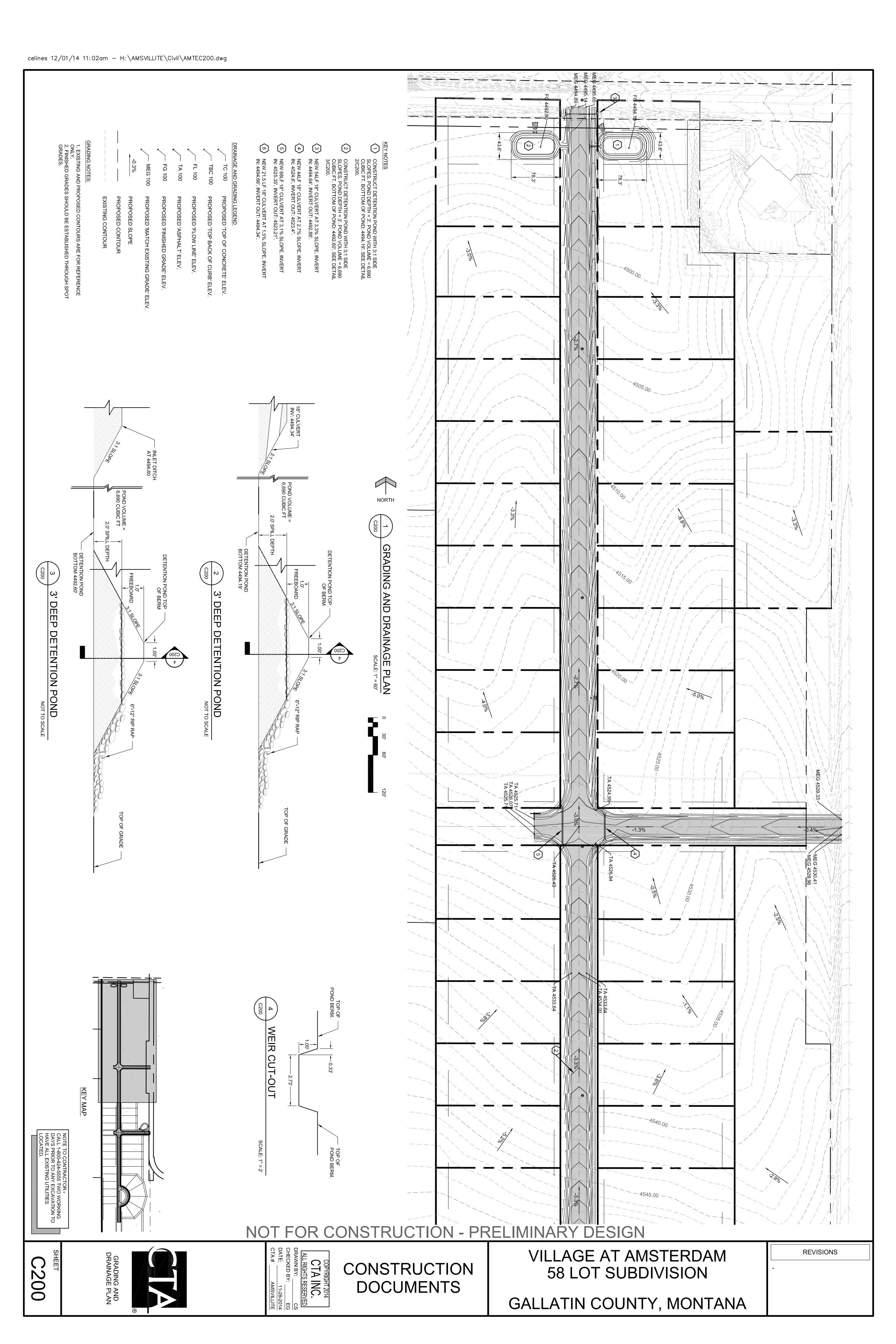
MIN.

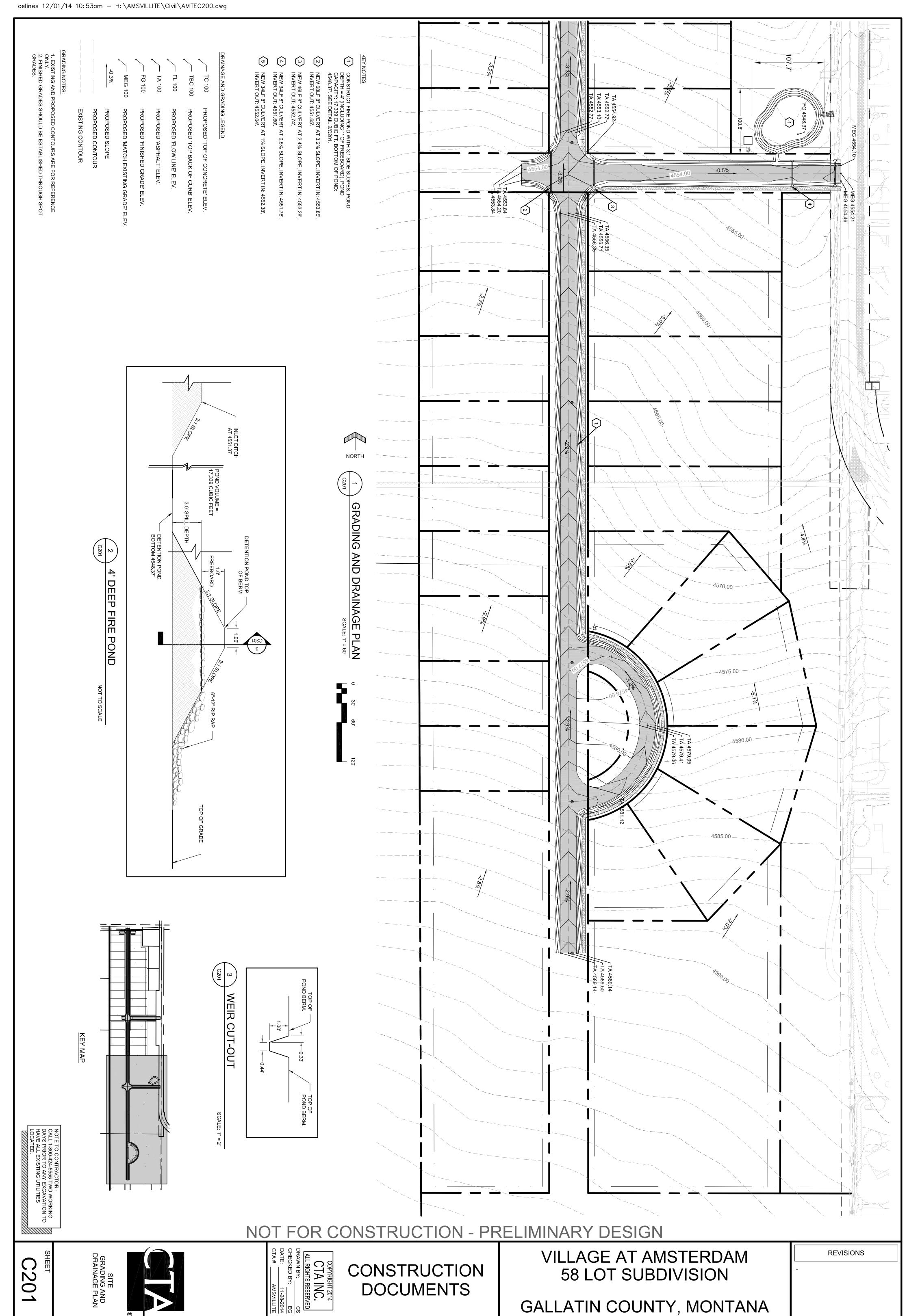
VILLAGE AT AMSTERDAM 58 LOT SUBDIVISION

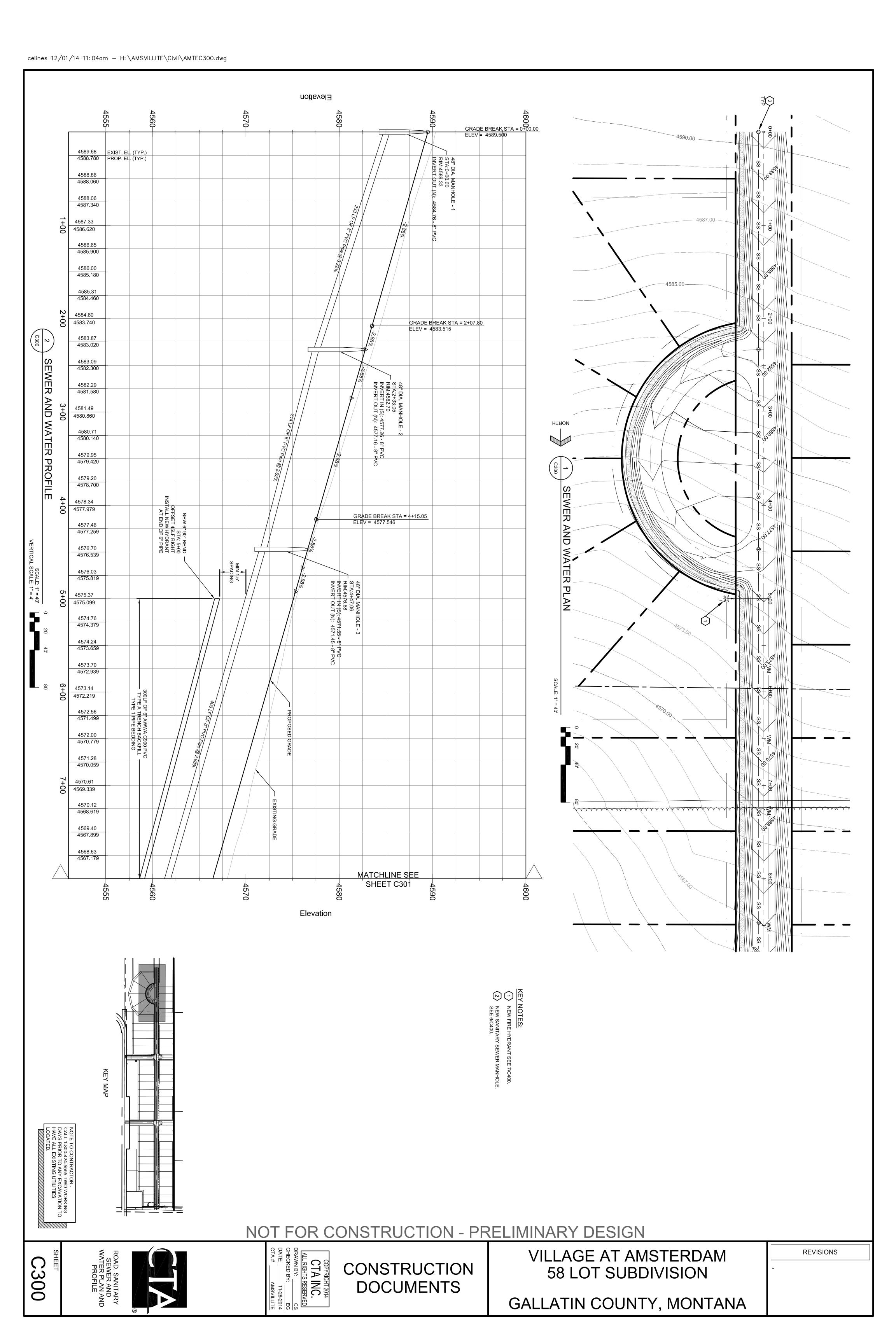

GALLATIN COUNTY, MONTANA

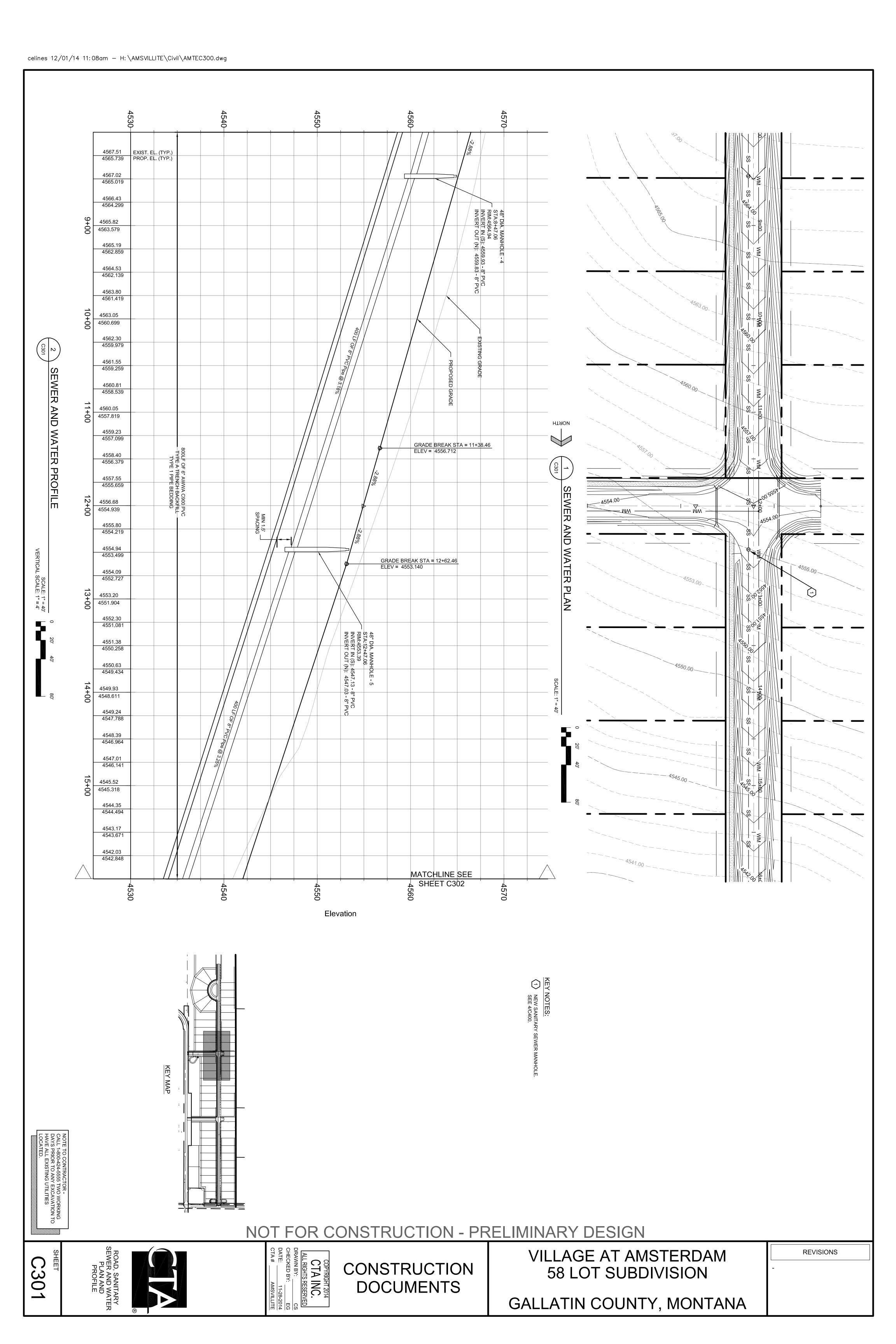

NOTE: THIS STORMWATER POLLUTION PREVENT PLAN IS A DOCUMENT WHICH MUST BE CONTINUALLY UPDATED AND REVISED TO ADDRESS THE CHANGING SITE CONDITIONS AND AS REQUIRED BY THE MPDES.

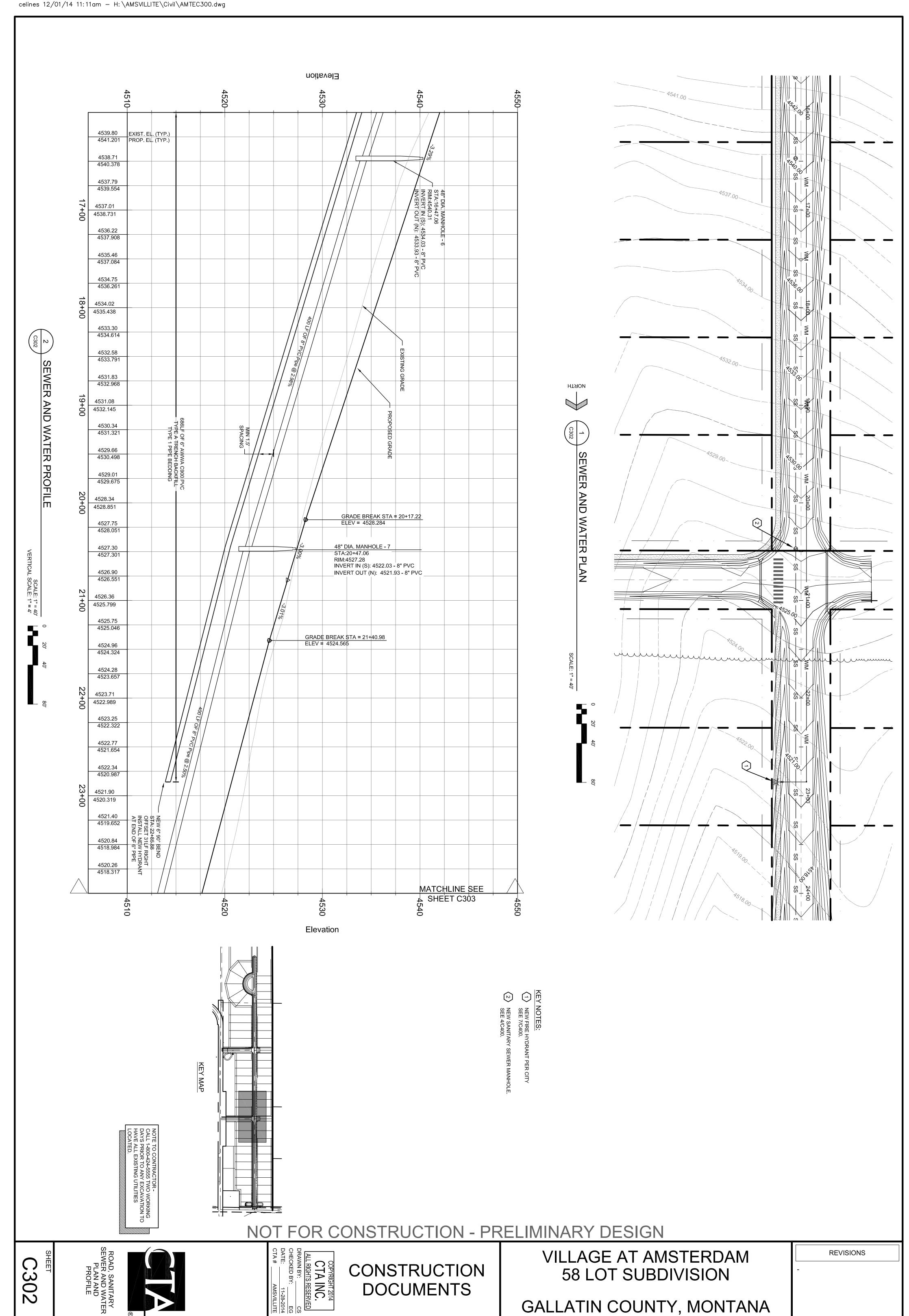


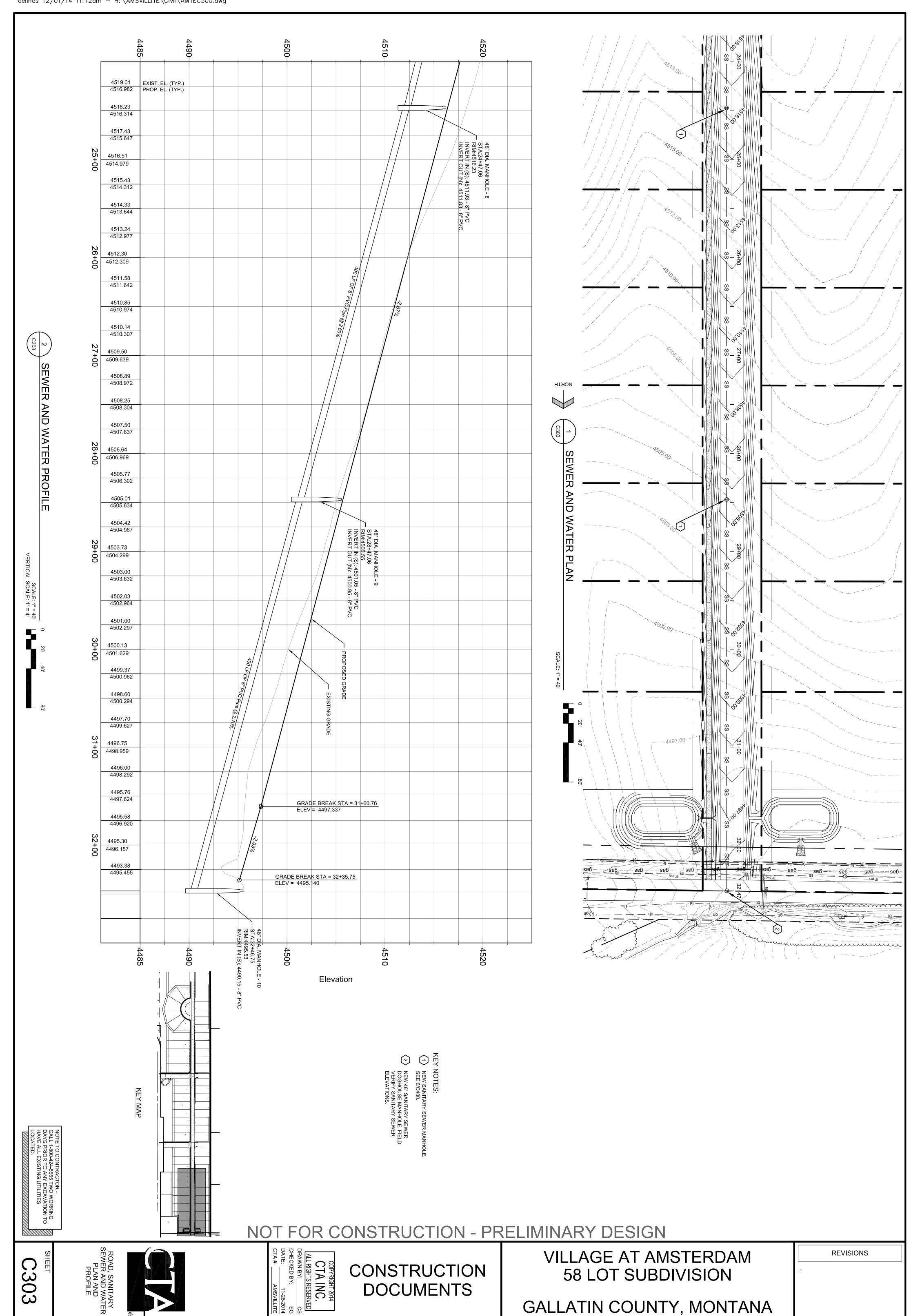

DRAWN BY: _____CHECKED BY: COPYRIGHT 2014
CTA INC.
ALL RIGHTS RESERVED

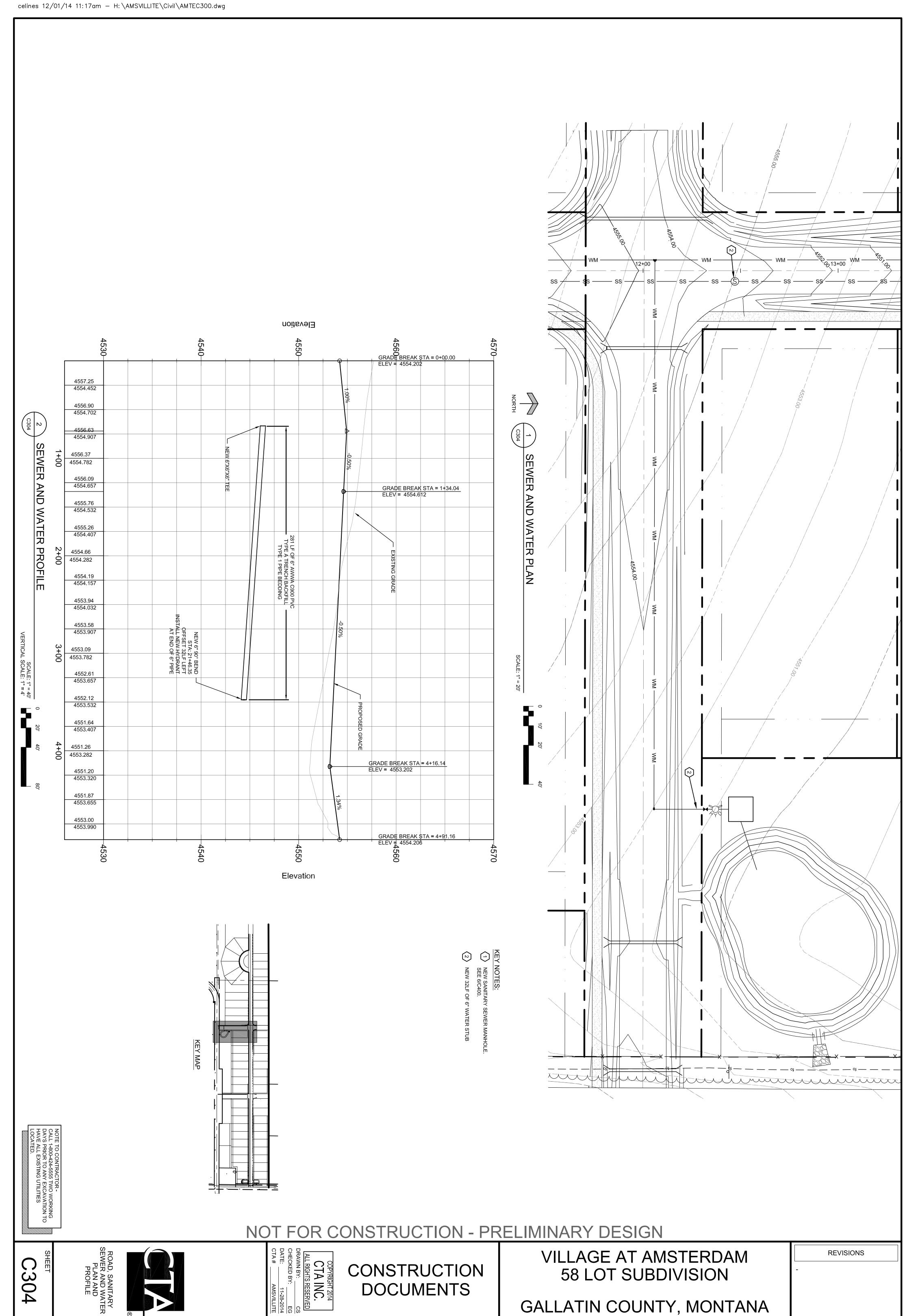

TEMPORARY EROSION CONTROL NOTES & DETAILS

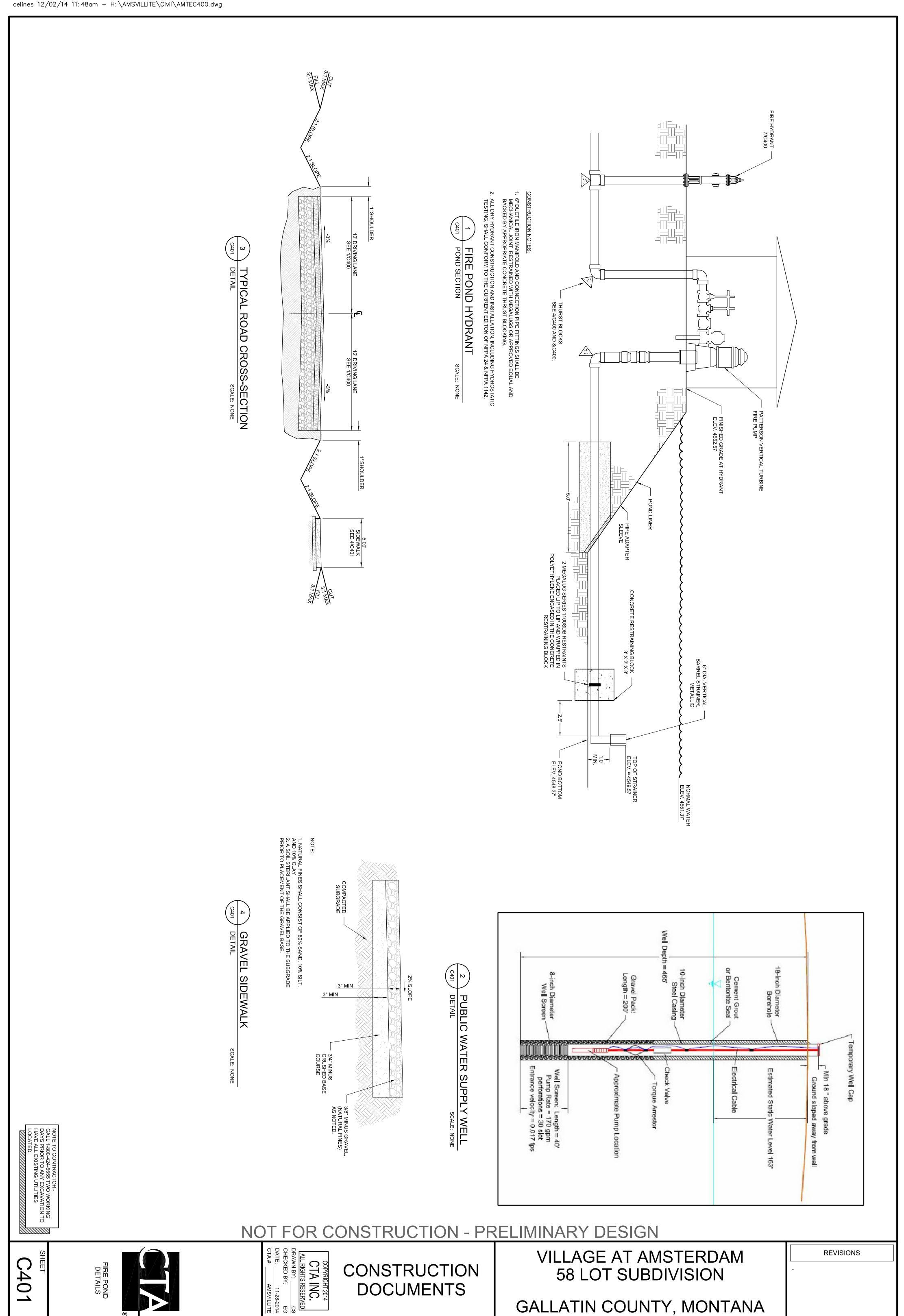












AMSTERDAM VILLAGE SUBDIVISION AMSTERDAM, MT

PRELIMINARY PLAT - ENGINEERING REPORT

DECEMBER 2015

CTA Project No.: AMSVILLITE

TABLE OF CONTENTS

INTRODUCTION AND PURPOSE	
SANITARY SEWER COLLECTION SYSTEM	3
STORM WATER DRAINAGE PLAN	9
WATER DISTRIBUTION SYSTEM	13

APPENDICES

Appendix A Sanitary Sewer System Calculations

Appendix B Storm Water Calculations

Appendix C Water Quality and Quantity Data

INTRODUCTION AND PURPOSE

The Amsterdam Village Subdivision contains 77 acres of undeveloped land. The proposed project site is located southwest of the intersection of Amsterdam Road and Churchill Road. More specifically, the project is located in the East One-Half (E ½) of the East One-Half (E ½) of the East One-Half (E ½) of Section 14, Township One South (T1S), Range Three East (R3E) Gallatin County, Montana. The project proposes to split the property into 58 residential lots and 2 commercial lots being completed in 3 phases.

The subdivision will be serviced by individual water wells located on each lot and a sanitary sewer main that runs south to north connecting to an existing line on Amsterdam Road. Storm water will be managed by two on-site storm sewer detention ponds. One of these ponds will also function as a fire pond with the ability to service the entire site.

Figure 1: Vicinity Map

Not to Scale

SANITARY SEWER COLLECTION SYSTEM

The preferred sanitary system option to service the Amsterdam Village Subdivision is a gravity flow network built to accommodate future flows of a fully developed subdivision. The *DEQ Circular – 2 Standards for Wastewater Facilities* outlines the regulatory requirements and criteria that the design for the sewer systems must meet. The proposed sewer main line will be installed that flows from south to the north connecting to an existing sewer main along Amsterdam Road.

Communication with the District's Engineer indicated that the property is within the revised sewer district boundary. This district has a treatment capacity of 75,000gpd at Manhattan's treatment facility. The subdivision's sewer contribution must be evaluated in conjunction with the existing flows to determine if the district will need to purchase additional capacity.

DEQ-2, Chapter 30 "Design of Sewers"

31 SEPARATION OF CLEAR WATER

The sewer is designed for conveying sewage from the Amsterdam Village Subdivision to the Amsterdam City mains.

32 DESIGN CAPACITIES AND DESIGN FLOW

The sewage from the Amsterdam Village Subdivision will be conveyed to the city main via a sewer line that runs south to north through the middle of the subdivision. This proposed sewer main connects to the 8" main that flows east to west main along Amsterdam Road. The proposed mains within the subdivision will be 8-inch in diameter and are sized to flow at no more than 75% of capacity for peak hour conditions. The peaking factor for the design area is determined by calculating the equivalent population and inserting the population into the Harmon Formula.

Residential Lots

The city residential average of 2.34 persons per household is used to calculate the equivalent population for the residential lots. Montana DEQ 4 specifies a 4 bedroom residential dwelling unit as having a flow of 350gpd.

Population: (2.34 persons/d.u.) (58 d.u.) = 135.72 persons

Flow Rate = (58d.u.) (350gpd/d.u.) = 20,300gpd

Commercial Lot - Convenience Store

To estimate the commercial population for a convenience store, a flow rate based on square footage (data from Brunswick County NC) was selected and multiplied by the area of a typical convenience store (the corner of 19th and Baxter in Bozeman). This flow is then

divided by a representative Montana DEQ4 flow per employee, yielding a population estimate.

Population =
$$(5,000 \text{ft}^2)$$
 $(60 \text{gpd}/100 \text{ft}^2)$ / $(13 \text{gpd/person}) = 231 \text{ person}$

Flow Rate =
$$(5,000\text{ft}^2)$$
 $(60\text{gpd}/100\text{ft}^2) = 3,000\text{gpd}$

Commercial Lot - Office

Montana DEQ 4 specifies an office as having a flow of 13gpd/employee. Approximately 30 employees will be utilizing the office facilities.

Infiltration Rate

Peak Flow

The peak flow rate is calculated by multiplying the total flow rate by the peaking factor and adding the infiltration rate:

Harmon Formula: Peaking factor =
$$(18+P^{1/2}) / (4+P^{1/2})$$

Where: P = Population in thousands = 0.392

Peaking factor =
$$(18+0.392^{1/2}) / (4+0.392^{1/2})$$

Peaking factor
$$= 4.03$$

Average Daily Flow:
$$20,300$$
gpd + $3,000$ gpd + 390 gpd = $23,690$ gpd

Peak Flow Rate:
$$4.03*(23,690) = 95,470.7$$
gpd = 0.148 cfs

Peak Flow Rate (including infiltration): 0.161cfs

Sanitary Sewer Hydraulic Analysis

The capacity of an 8-inch main is checked using Manning's Equation:

$$O = (1.486/n)AR^{2/3}S^{1/2}$$

For an 8-inch PVC sewer main:

Manning's n = 0.013 for PVC Minimum Slope = 0.004 ft/ft

A = area = $(3.14/4) d^2$ = $(3.14/4)(8/12)^2 = 0.324907 ft^2$ P = perimeter = 2(3.14) r = 2(3.14/4)(4/12) = 2.0944 ft

$$\begin{split} R &= \text{hydraulic radius} = A/P &= 0.341/2.094 &= 0.1667 \text{ft} \\ R^{2/3} &= 0.301 \text{ft} \\ S &= 0.004 \text{ ft/ft} \\ S^{1/2} &= 0.0632 \text{ ft/ft} \\ Q_{\text{full}} &= (1.486/0.013) \ (0.34907 \text{ft}^2) \ (0.30105 \text{ft}) \ (0.0632 \text{ft/ft}) = 0.7592 \text{ cfs} \\ Q_{0.75} &= (0.75) \ (0.7592 \text{cfs}) = 0.5694 \text{cfs} > Q_{\text{peak}} = 0.161 \text{cfs} \end{split}$$

Based on these calculations, an 8-inch sewer main is more than adequate to carry the design flows for the subdivision. Additionally Appendix A shows the peak flow in the 8-inch sewer main.

33 DETAILS OF DESIGN AND CONSTRUCTION

33.1 Minimum Size

The gravity sewer main is to be 8 inches in diameter.

33.2 Depth

The minimum depth of the new sanitary services is 4 feet to the top of pipe. In locations where cover is less than 4 feet over top of pipe, the pipe will be insulated with polystyrene or equivalent to prevent freezing.

33.3 Buoyancy

Buoyancy of sewers is considered and flotation of the pipe will be prevented with appropriate construction where high groundwater conditions are anticipated.

33.4 Slope

33.41 Recommended Minimum Slopes

The 8" gravity main is to be constructed at various grades equal to or higher than the required standard minimum of 0.40%. A potential 6" gravity service must be considered at various grades higher than the required minimum of 0.60%.

33.42 Minimum Flow Depths

The 8" gravity main will meet or exceed minimum slopes published in DEQ Table 33.41.

33.43 Minimum Flow Deposition

The size and slope of the proposed main will minimize solids deposition.

33.44 Slope Between Manholes

All sewers are designed to have uniform slope between manholes.

33.45 High Velocity Protection

Velocities will be less than 15 feet per second.

33.46 Steep Slope Protection

Design slopes are less than 20%

33.5 Alignment

The gravity sewers will be laid in straight alignments between manholes and will be checked per MPWSS prior to acceptance

33.6 Changes in Pipe Size

Any changes in pipe size will only be made at manholes for this project.

33.7 Materials

The new gravity sewer main will be constructed from SDR 35 PVC in accordance with MPWSS Section 02730.

33.8 Installation

33.81 Standards

The new sewer services will be constructed in accordance with MPWSS Section 02730.

33.82 Trenching

The new gravity will be constructed in accordance with MPWSS Section 02730. Trenching and backfill will be in accordance with MPWSS Standard Drawing No. 02221-1.

33.83 Pipe Bedding Materials and Placement

The new sewer will be constructed in accordance with MPWSS Section 02730. Bedding and backfill will be in accordance with MPWSS Standard Drawing No. 02221-1 and contract documents.

33.84 Final Backfill

The new sewer will be constructed in accordance with MPWSS Section 02730. Final backfill will be in accordance with MPWSS Standard Drawing No. 0221-1 and contract documents.

33.85 Deflection Test

Deflection testing for sewer will be at a minimum per MPWSS Section 02730 or per the procedure described in Circular DEQ-2 Section 33.85.

33.9 Joints and Infiltration

33.91 Joints

Gravity sewer joints shall be gasketed in accordance with MPWSS Section 02730 Part 2.2.

33.92 Leakage Test

Leakage testing will be conducted per MPWSS Section 0273 3.4 Tests.

33.93 Water (Hydrostatic) Test

Hydrostatic testing will be conducted per MPWSS Section 02730 3.4 Tests.

33.94 Air Test

Air testing will be conducted per MPWSS Section 02730 3.4 Tests.

33.95 Service Connections

Service connections shall be constructed in accordance with MPWSS Section 02730 and Standard Detail 02730-2 and the contract documents.

34 MANHOLES

34.1 Location

Manhole locations meet the minimum requirements for 8" gravity sewer and are no more than 400 feet apart.

34.2 Drop Type

No drop manholes are included in the design.

34.3 Diameter

The manholes shall be 4' diameter precast concrete in accordance with MPWSS Section 02730 and Standard Drawing 02720-3.

34.4 Flow Channel

A flow channel with a 0.10' drop across the manhole will be included in accordance with MPWSS Standard Drawings 02720-3 and 02720-7.

34.5 Bench

A bench will be included in accordance with MPWSS Standard Drawing 02720-3.

34.6 Watertightness

The manholes shall be precast concrete in accordance with MPWSS Section 02730. Inlet and outlet pipes shall be joined to the manhole with flexible gaskets.

34.7 Inspection and Testing

Manhole testing shall be in accordance with MPWSS Section 02730 Part 3.4.

34.8 Corrosion Protection for Manholes

Corrosive conditions are not anticipated for this installation.

34.9 Electrical

No electrical connections are necessary for this installation.

35 INVERTED SIPHONS

There are no inverted siphons on this project

36 SEWERS IN RELATION TO STREAMS

There are no stream crossings proposed for sanitary sewers.

37 AERIAL CROSSINGS

There are no proposed aerial crossings in this project.

38 PROTETION OF WATER SUPPLIES

38.1 Cross Connections Prohibited

There will be no physical connection between the proposed sewer and any domestic water facility.

38.2 Relation to Water Works Structures

Known public water mains and service connections are shown on the plans

38.3 Relation to Water Mains

38.31 Horizontal Separation

Sewers will be laid a minimum of 10', measured edge to edge, from any existing or proposed water main.

38.32 Crossings

All new sewer mains will provide for the maximum allowable separation between water services that the existing water mains can provide and include a minimum vertical separation of 18" where possible. Refer to 8.8.4 for any exceptions.

39 SEWER SERVICES AND PLUMBING

39.1. Plumbing

No plumbing connections to domestic and fire lines are proposed for this project

STORMWATER DRAINAGE PLAN

This Stormwater Drainage Plan satisfies the DEQ 8 Montana Standards for Subdivision Storm Drainage requirement for the development for the Amsterdam Village Subdivision in Amsterdam, Montana. This plan addresses the proposed improvements by examining the preand post-development stormwater runoff characteristics of the site. Additionally it provides mitigating measures to compensate for potential impacts resulting from the development.

Design Criteria

Pre and post-development runoff calculations are performed using the methodology found in the DEQ 8 Montana Standards for Subdivision Storm Drainage, 2002 edition.

Design Assumptions

An original topographic survey for the Amsterdam Subdivision was performed in 2006 by Alpine Survey. Additionally, a recent supplemental survey information was done by CTA Surveying. Both these surveys are for the storm water analysis. Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2014 is the modeling program used to size the proposed storm water detention ponds and culverts.

Soil Information

A geotechnical report will be completed for the development analyzing: groundwater conditions, existing soils, acceptable use of native materials and compaction requirements. The geotechnical report will also include recommend asphalt and concrete sections.

Design Assumptions

In general, the topography of the site slopes north toward Amsterdam Road and has an average slope of 4%. The natural topography in addition to the property's eastern swale conveys runoff from the south to the north. Once the runoff reaches the northern drainage area it flows into the Amsterdam roadway ditch runs which flows from east to the west.

In analyzing pre-development conditions, the property is delineated into two basins: onsite Basin A having 64.5 acres and off-site Basin B having 22.6 acres. Basin B is located to the south west of the development. Runoff from this area will flow from the southwest to the north along with the on-site flows.

Pre Development Hydraulic Analysis

As the offsite flows are constant between the pre and post development conditions, the pre development hydraulic analysis is focused on just onsite Basin A. The *DEQ 8 Montana Standards for Subdivision Storm Drainage* is used in determining runoff coefficients for Basin A. The Rational Method is used to calculate peak runoff rates during the 2-yr 1 hour and the 100-yr 24 hour runoff events using a runoff coefficient of C=0.3 to describe the unimproved areas of Basin A. See Appendix B for a layout of the pre-development basins.

Post Development Conditions

The post-development conditions of the site will consist of the addition of an asphalt roadway system as well as residential construction and landscaping on each lot. The post-development area is further broken down into two separate basins, A1 and A2. According to preliminary analysis, the offsite runoff will be controlled by two detention ponds, one at the north of basin A1 and another at the north of basin A2. Appendix B shows the location of each detention area. The pond in basin A1 will collect drainage from the south east part of the site and outlet to the swale along the edge of the property and flow north. The pond in basin A2 will collect the remaining site flows and outlet into the roadway ditch along Amsterdam Road and continue west. Runoff from each detention area will be conveyed from the property at pre-development rates.

Post Development Hydraulic Analysis

The proposed development, like the pre-development is analyzed focusing on Basin A. The composite runoff coefficient of developed Basin A is broken down in Table 1.

Table 1	Dogt	Danala	man and	I and	Components
Tuvie 1	$ \Gamma$ OSi	Develo	vmeni 1	Luna v	Components

		Area	Runoff
Description	Area	(%)	Coefficient
24 ft Asphalt Roads	3.4	5.27	0.95
58 Residential Lots Impervious (5000sf/lot)	6.43	9.97	0.95
58 Residential Lots Landscape (4000sf/lot)	5.14	7.97	0.1
Agricultural Land & Right of Way	47.57	73.75	0.3
2 Commercial Lots	1.96	3.04	0.8

The weighted runoff coefficient of Basin A is C=0.4. This coefficient is used for the flow rate calculation of both the basins. Additionally, the times of concentrations used for Basin A1 are applied to the flow rate calculation for both basins in order to provide the most conservative estimation of flow. Storm water detention will be utilized to attenuate runoff rates to predevelopment conditions for the 2-yr 1 hour runoff event. Additionally, the ponds will be able to detain the volume difference between the pre and post development conditions.

Tables 2 and 3 below compare the pre and post development peak flow rates for both basins during a 2-year 1-hr event.

Table 2 - Basin A1 Peak Flows for 2-year 1-hr Event

	Time of Concentration (min)	Q _{peak} (cfs)	Hyd. Volume (ft³)
Pre-Development	34	1.93	3,938
Post-Development	32.5	2.63	5,211

Volume Difference 1,273

Table 3 – Basin A2 Peak Flows for 2-year 1-hr Event

	Time of Concentration (min)	Q _{peak} (cfs)	Hyd. Volume (ft³)
Pre-Development	34	9.187	18,742
Post-Development	32.5	12.52	24,798

Volume Difference 6,056

Tables 4 and 5 compare the pre and post development peak flow rates for both basins for a 100-year 24-hr.

Table 4 – Basins A1 Peak Flows for 100-year 24-hr Event

	Time of Concentration (min)	Q _{peak} (cfs)	Hyd. Volume (ft³)
Pre-Development	34	4.629	9,444
Post-Development	32.5	6.31	12,494

Table 5 – Basins A2 Peak Flows for 100-year 24-hr Event

	Time of Concentration (min)	Q _{peak} (cfs)	Hyd. Volume (ft³)
Pre-Development	34	29.37	59,923
Post-Development	32.5	30.03	59,456

Storage Facilities & Discharge Structures

Per Chapter 4 of DEQ 8 Montana Standards for Subdivision Storm Drainage, the storm water detention systems for the development will need to accommodate the 2-year 1 hour event.

Basin A1 Detention Pond

The pond in Basin A1 will serve as a 120,000 gallon (16,042 ft³) fire pond for the area. Therefore the pond must be sized to hold the fire pond volume as well as the additional runoff from a 2-year event totaling 17,315 ft³.

Pre-Development Q_{2yr} = 1.93cfs Post-Development Q_{2yr} = 2.63cfs Outlet Weir = 0.436ft wide

Basin A2 Detention pond

The pond in Basin A2 is designed to have an approximate storage capacity of 6,056 cubic feet.

Pre-Development $Q_{2yr} = 9.19cfs$ Post-Development $Q_{2yr} = 12.5cfs$ Outlet Weir = 0.525ft wide

Culverts

The culverts on the site are sized to accommodate post development peak runoff rates. The size of the culverts is conservatively modeled to ensure they are able to convey the highest post development flow of 12.5 cfs.

Maintenance Considerations

The detention ponds should be inspected to determine sediment accumulation. If a large amount of sediment is detected (6 inches), then the sediment must be removed from the bottom of the pond. The sediment may contain a significant amount of metals as well as the possibility of pesticides. All sediment removed from the facility shall be deposed of per the City of Amsterdam and Department of Environmental Quality Standards.

Summary

Stormwater runoff from the project site will be collected and detained on-site. During the construction of the site, the proposed system will collect and combine the stormwater from the various lots and convey the runoff to the north for detention prior to release. This measure protects from erosion caused by the release of stormwater runoff at greater velocities than previously experienced.

WATER SYSTEM

This section provides the information required in Part II.B of the Montana Department of Environmental Quality's (MDEQ's) Subdivision Application Form revised in December 2003. Specifically, the following information is presented in response to the requirements of Section 3 of Part II.B, which address individual water supply systems. Residents of the Amsterdam Subdivision will obtain domestic water from individual wells placed on each lot.

Significant hydrology and groundwater testing was completed for the original preliminary plat application in 2007 and 2008. At that time a public system was proposed to serve a much larger development. Much of the data from that application will serve as the supporting information contained within this application.

The nearest Public Water Supply (PWS) systems are located in the Town of Manhattan, City of Belgrade, River Rock, and the Four Corners Water and Sewer District, all between 6.5-7.0 miles away. This distance makes the connection to a PWS a financially problematic option. Therefore, individual water wells are a suitable solution for domestic water for the residences.

To substantiate the availability of a suitable water supply, supplementary information is provided in Appendix C including copies of applicable well logs and water quality information.

Groundwater Sources

Well data from the area of the site was obtained from a variety of sources including the following:

- Site information from drilling wells AV-1, AV-2, and Obs-1;
- Montana Bureau of Mine's (MBMG) Groundwater Information Center (GWIC) for well construction and geologic logs, water level and yield information, and water quality data;
- The USGS for water level data:
- Montana DEQ for water quality data from area public water supply wells;
- State and local sources for pumping test data from nearby sites; and
- Literature references for geologic and hydrogeological descriptions along with water level data.

A total of 202 wells were found in the MBMG GWIC database for T1S R3E Sections 10-15 and 22-24 (Figure 2). Well locations may not be precise as the database contains mostly simple quarter-section approximations. The database was also queried further for water level and water quality data. Information from the other sources noted is discussed below.

Figure 2: Well Locations

		Depth (ft)			Yield (gpm)	
Sec	Wells	Min	Max	Avg	Min	Max	Avg
10	15	100	359	192.8	20	1000	276.5
11	12	73	315	125.1	4	1500	153.3
12	4	80	160	117.0	30	40	35.0
13	106	55	453	188.4	2	500	49.4
14	40	20	460	95.6	3	300	36.4
15	4	143	216	179.8	15	75	37.0
22	2	75	100	87.5	18	25	21.5
23	7	35	410	139.7	10	600	150.4
24	12	23	238	139.2	12	65	30.7
Total	202	20	460	159.2	2	1500	67.3

WELL LOG SUMMARY FROM MBMG

Listed usages for the wells obtained from the MBMG search include the following:

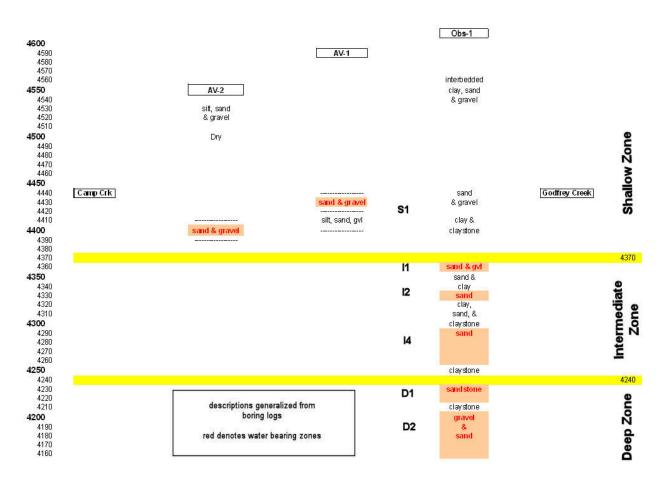
Domestic: 170PWS: 10Commercial: 2Industrial: 2

Irrigation/Stockwater: 6Monitoring/Other/Unknown: 9

Hydrogeology and Hydrologic Conditions

Wells in the vicinity of the proposed well are predominantly finished less than 150 ft bgs in multiple confined and leaky-confined tertiary aquifers. Only five wells in the vicinity of the project are completed at depths greater than 350 ft bgs. Well logs in the area list fine-grained Quaternary colluvium ranging in thickness from a few feet to approximately 30 feet, underlain by inter-tongued Tertiary sediments consisting of sands, gravels, clays, claystone and sandstone. Multiple confining clay layers are present in the tertiary sediments, but they may not be laterally extensive.

The wells will be located in the larger, interconnected Gallatin Valley Aquifer. Data in the GWIC database list static groundwater levels in the deep wells between 106 - 164 ft bgs. Recharge to the alluvial aquifer occurs primarily from seepage from streams and irrigation canals (Hacket and others, 1960). Recharge to the deeper, leaky-confined aquifers occurs from upgradient groundwater flow, precipitation infiltration into bedrock exposed in Camp Creek Hills and Gallatin Range and potential leakage from the overlying alluvial aquifer.


Although well logs in the area list multiple confining layers, it is doubtful these layers are continuous. In addition, numerous wells have been drilled through the confining layers, creating a conduit for vertical groundwater flow. Therefore, the aquifer located beneath the proposed subdivision is classified as leaky-confined for the purpose of this report and is assigned a rank of "Moderate Source Water Sensitivity" according to Table 2 of the Instructions for Completing a

PWS-6 Report for Community or Non-Community Non-Transient Public Water Supplies (DEQ Source Water Protection Program, 2002).

In September 2006 Red Tiger Drilling drilled a 460ft deep exploratory well in the vicinity of the proposed wells with oversight from PBS&J. Multiple layers of clay, silt, sand, and gravel were encountered. Water producing aquifers were encountered in the zones from 265 – 271ft bgs (50 gpm), 295 – 300ft bgs (20gpm), 335 – 340ft bgs (60gpm), 363 – 371ft bgs (100gpm) and 400ft bgs (85 gpm), but the water from these zones was sandy and would require a sand filter. An aquifer located in the zone 416 – 460ft bgs produced clear water in quantities over 100gpm. The driller was unable to drill deeper than 460ft bgs due to heaving sands, so the depth of this aquifer is not known. Water level in the exploratory well was measured at 163 feet below ground surface on October 15, 2006.

Groundwater is present beneath the site in a number of water bearing zones separated by finer grained units. Drilling logs from the site wells AV-1, AV-2, and Obs-1 were used to develop the schematic cross-section shown in Figure 3. The schematic is not to scale but is presented to illustrate the relative elevations of water bearing zones and surface water bodies. The schematic shows that the shallower water bearing zones intersected by wells AV-1 and AV-2 lie at roughly the same elevation as the two nearby creeks (Camp Creek and Godfrey Creek).

Figure 3: Site Cross-Section Schematic

The well log for Obs-1 on site describes the following water bearing zones and apparent flow rates:

- 265-271ft bgs (4,364-4,358ft MSL): 50gpm (I1)
- 295-300ft bgs (4,334-4,329ft MSL): 20gpm (I2)
- 335-371ft bgs (4,294-4,258ft MSL): 60-100gpm (I4)
- 400-413ft bgs (4,229-4,216ft MSL): 85gpm (D1)
- 416->460ft bgs (4,213-<4,169ft MSL): >100gpm (D2)

For comparison, the two Churchill North Subdivision wells produce from 248-259ft (4,283-4,272ft MSL) for PW-1 (GWIC 208723) or equivalent to the lower intermediate zone for Obs-1; and from 440ft (4,091ft MSL) for PW-2 (GWIC 220348) or deeper than the bottom of Obs-1.

For this evaluation the water bearing zones were broken into:

- "Shallow" (above elevation of 4,370ft MSL)
- "Intermediate" (elevation 4,370 to 4,240ft MSL), and
- "Deep" (below elevation 4,240ft MSL).

Contours of the depth to water in wells in the area from Slagle (1995) are shown in Figure 4, which depicts groundwater flow to the northwest at a gradient of 0.0426 in the immediate vicinity of the site. The upper number on the data points on Figure 4 is well depth, the lower number is depth to water.

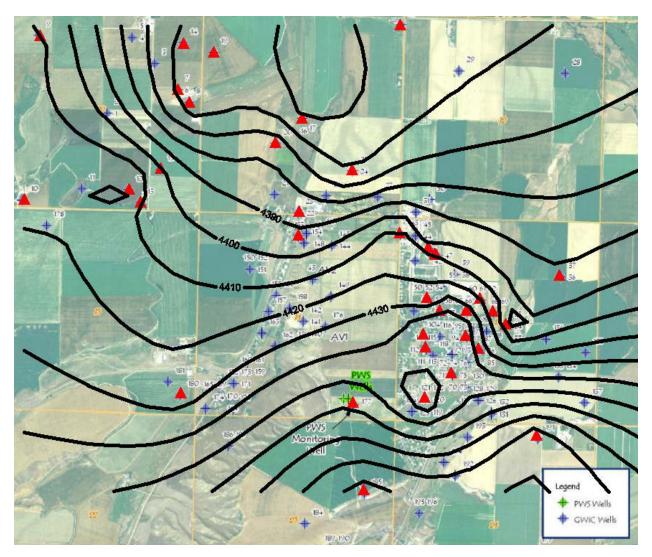
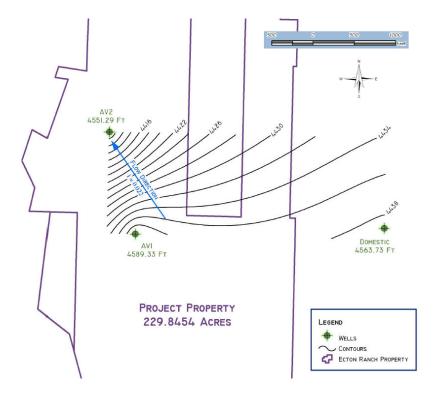

NTLY FLUVIAL DEPOSITS (Quan LACUSTRINE AND FLUVIAL DEPOSITS UNDIFFERENTIATED (Tertiary 123.6

Figure 4: Water Surface Contour Map (Slagle, 1995)

Water level data obtained from MBMG were used to develop a contour map using more wells in the vicinity of the site for greater resolution. A map of these contoured data is shown in Figure 5. The gradient shown is flatter than the regional map, at 0.013. The wells used were ones with open intervals deeper than 4,370 feet. An initial attempt to use all wells in the area indicated that at least some of the shallower wells are not connected to the deeper zones.

Figure 5: Potentiometric Map of the Amsterdam Village Area – Intermediate and Deep Zones



The static depth to water in wells compared to the depth of the water bearing units suggests the Tertiary aquifers are under pressure and confined (water levels rise in the wells above the top of the water bearing zones). Groundwater elevation differences in the data reviewed for the contour map above and well hydrographs discussed below suggest that the Shallow zone is not significantly hydraulically connected to the Intermediate and Deep zones. The difference in elevations between Intermediate and Deep zone wells is less significant, which may suggest these units are in communication.

Pumping test data from a deep zone irrigation well about 8 miles to the north (GWIC 217387) indicates that there is no connection between the deep zone and shallower zones. However, testing two other deep zone wells near the town of Manhattan (GWIC 223575 and 214959) shows a slight connection between the Deep zone and shallower zones.

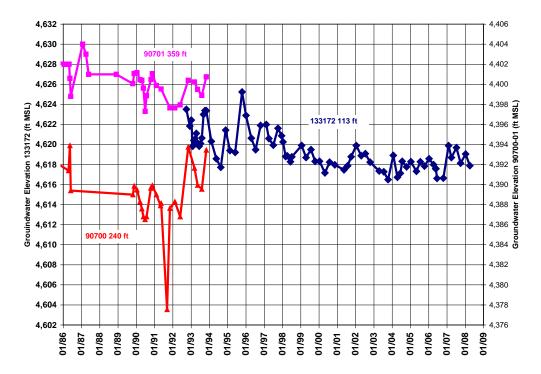

A map depicting groundwater contours for the shallow zone is shown in Figure 6. The contours are based on just three data points, but show a flow direction to the northwest, similar to the deeper zones.

Figure 6: Potentiometric Map of the Amsterdam Village Area – Shallow Zone

Hydrographs for three wells in T1S R3E are shown in Figure 7. The plots show that water levels declined slightly during the period 1986-2000, but appear to have remained stable since 2000. The wells show seasonal fluctuations of about 2-4ft with peaks generally in early to late spring and lows in the summer. The three wells are for different depths (113ft or 4545ft MSL, 240ft or 4300ft MSL, and 356ft or 4181ft MSL). The water levels indicate a significant downward gradient between the shallow and intermediate well (about 230ft) indicating confining units between these zones, and a rise or upward gradient between the intermediate and deeper wells (about 12 feet). This interpretation is a generalization because the wells are in different locations.

Figure 7: Well Hydrographs

Water Quality

Laboratory analytical data from the DEQ public water supply database and analysis results from site well samples were used to evaluate groundwater quality for the area around the proposed Amsterdam Village development. The MBMG GWIC database did not contain many samples within the nine section search area noted above, so the well search was expanded with wells beyond the original search area referred to below as "regional" water quality wells. Water Quality data obtained consists of the following:

- 13 site samples, including 5 each from wells AV-1 and AV-2 (only nitrate data for 8 of these samples) and 3 samples from Obs-1 (at two different depths);
- 11 samples from area PWS systems including 8 from Churchill North, 3 from the Churchill Retirement Home, 4 from Godfrey Canyon Estates, and 4 from the Manhatten Christian School. No data were available for the Dyksterhouse Subdivision in the DEQ database; and
- 22 GWIC samples from 16 locations outside the initial search area and referred to as "regional" wells (20 miles or less away from the site). The regional wells were classified by basin (Gallatin, Madison, or Jefferson).

A summary of the analysis results for all samples are contained in Appendix C. The location of the wells is shown on Figure 8 for regional wells and on Figure 9 for nearby wells. The well location for the Manhattan Christian School (F on map) appears erroneous; this well is in actuality located further to the east.

Figure 8: Regional Water Quality Sample Well Locations

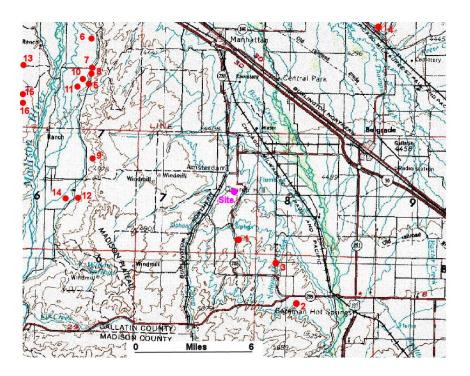
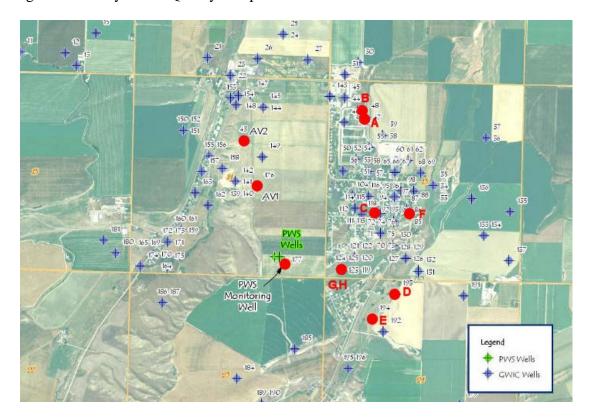
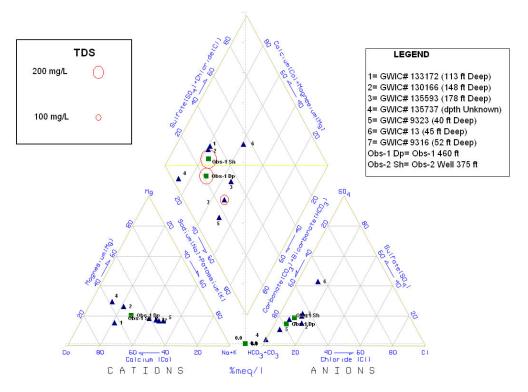




Figure 9: Nearby Water Quality Sample Well Locations

A piper diagram plot of the sample analysis data for wells 1-7 and two Obs-1 samples is shown in Figure 10. This plot summarizes the general characteristics of the groundwater and can be used to identify distinctly separate water types. The diagram shows that groundwater from all of these samples is generally similar and can be classified as calcium-carbonate type. The two Obs-1 samples plot in the same general area as all of the others indicating the water types are the same.

Figure 10: Piper Diagram of Select Well Samples

Exceeding groundwater standards in the regional samples is most prevalent for arsenic, with 14 of the 22 GWIC samples exceeding the standard of 10 ppb, with a range of 10-122 ppb. The closest wells to the site had concentrations of 5.6 ppb (#1), 5.6-10 ppb (#2), and 11.1 ppb (#3). The highest arsenic concentrations were for wells to the northwest near the Madison River.

Other exceedances for the regional wells include the Iron standard of 0.3 ppm (#1 at 0.33 ppm although a second sample was 0.005 ppm), the Sulfate standard of 250 ppm (#6 at 253 ppm although a second sample is 239 ppm, and #13 at 408 ppm), the nitrate standard of 10 ppm (#1 at 24.9 ppm but a second sample is 0.25 ppm), and the fluoride standard of 4 ppm (#1 at 11 ppm with a second sample at 0.3 ppm).

The local wells only showed exceedances for arsenic, with the range in concentrations being 2-17 ppb. Exceedances in the Obs-1 samples for iron, manganese, and aluminum could not be compared to other local wells because data was very limited or not available. Because of the

prevalence of arsenic at concentrations at or above the standard, this parameter was reviewed in greater detail. A summary of the arsenic data for the regional, local and site wells is shown on Table 6. The arsenic concentration data for each production zone and distance from Obs-1 is shown in Figure 11, with data from the wells close to the site only shown in Figure 12, with wells identified by zone.

Table 6 – Summary of Arsenic Data

Basin	Well	GWIC	Map ID	х	Υ	Dist Frm MW-1	Grnd Elev	TD	Aquifer Elev	Unit	As Conc (ppb)
AH-Gallatin River	USGS Kammerman	133172	1	1507170.0	537444.2	12973	4682	113	4569	S	5.6
7 II I Gallatii I I I I I I	Richard Bryan	130166	2	1522357.8	520803.0	33962	4982	148	4834	S	5.6
	Richard Bryan	130166	2	1522357.8	520803.0	33962	4982	148	4834	S	10
	Tom Kimm	135593	3	1516862.1	532263.5	21303	4778	178	4600	S	11.1
	Jim Scoggins	135737	4	1545328.0	592496.1	57978	4430				<1
AG-Madison River	9.0	9323	5	1467578.2	577380.5	46631	4198	40	4158	S	122
	J&J VanDyk	13	6	1469130.1	590540.6	54264	4130	45	4085	S	120
	J&J VanDyk	13	6	1469130.1	590540.6	54264	4130	45	4085	S	107
	Dierdre Richardson	9316	7	1469130.1	582338.1	48497	4170	51.5	4118.5	S	78
	Steve Livingood	9317	8	1468618.3	581327.6	48226	4200	79	4121	S	120
	June Doak	16	9	1469874.9	558176.8	36532	4460	100	4360	S	60
	Marie Tinder	30	10	1467066.3	579434.4	48260	4155	108	4047	S	116
	Chuck&Roberta Williams	32	11	1467036.8	576445.5	46542	4225	145	4080	S	89.4
	Chuck&Roberta Williams	32	11	1467036.8	576445.5	46542	4225	145	4080	S	101
	H Shipton	6899	12	1462367.9	547864.7	43253	4302	180	4122	S	45
	TBE Stock Well 2	3	13	1450106.9	583220.7	64473	4425				5.3
	Ken Mills	890505	14	1464540.0	549013.0	41032	4318				21
AE-Jefferson R	Jack Cooper	9258	15	1422503.8	578778.2	87789	4190	60	4130	S	2.6
	Jack Cooper	9258	15	1422503.8	578778.2	87789	4190	60	4130	S	2.73
	Lane Brothers	<u>9271</u>	16	1441894.5	575303.7	68385	4415	209	4206	1	19.4
Gallatin-Local	Churchhill North PW1	208723	Α	1507708.0	554260.9	4497	4531	257	4274		6
	Churchhill North PW1	208723	Α	1507708.0	554260.9	4497	4531	257	4274		5
	Churchhill North PW1	208723	Α	1507708.0	554260.9	4497	4531	257	4274	ı	4
	Churchhill North PW1	208723	Α	1507708.0	554260.9	4497	4531	257	4274	ı	4
	Churchhill North PW2	220348	В	1507708.0	554260.9	4497	4531	440	4091	D	5
	Churchhill North PW2	220348	В	1507708.0	554260.9	4497	4531	440	4091	D	13
	Churchhill North PW2	220348	В	1507708.0	554260.9	4497	4531	440	4091	D	13
	Churchhill Ret Home	90740	С	1508159.9	551640.6	2926	4577	230	4347	1	6
	Churchhill Ret Home	90740	С	1508159.9	551640.6	2926	4577	230	4347	I	7
	Godfrey Can Est Well 1	<u>90815</u>	D	1507287.0	547473.8	3330	4541	188	4353	ı	6
	Godfrey Can Est Well 1	<u>90815</u>	D	1507287.0	547473.8	3330	4541	188	4353	ı	5
	Godfrey Can Est Well 2	<u>146054</u>	E	1507935.0	548817.1	2816	4531	188	4343	ı	3
	Godfrey Can Est Well 2	<u>146054</u>	E	1507935.0	548817.1	2816	4531	188	4343	ı	2
	Manh. Christian School	<u>225403</u>	F	1508877.7	551753.1	3624	4544	453	4091	D	15
	Manh. Christian School	<u>225403</u>	F	1508877.7	551753.1	3624	4544	453	4091	D	17
	Manh. Christian School	225403	F	1508877.7	551753.1	3624	4544	453	4091	D	15
Gallatin-Site	Obs-1	230271	Obs-1	1505551.0	550315.3	1	4629	460	4169	D	25
	Obs-1	230271	Obs-1	1505551.0	550315.3	1	4629	375	4254	ı	9
	Obs-1	230271	Obs-1	1505551.0	550315.3	1	4629	375	4254	I	9
	AV-1	<u>236239</u>	AV-1	1504807.4	552374.4	2189	4590	165	4425	S	84
	AV-2	<u>236240</u>	AV-2	1504479.0	553621.7	3476	4547	148	4399	S	10

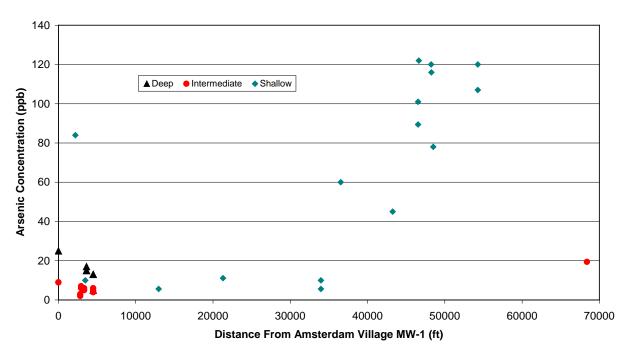
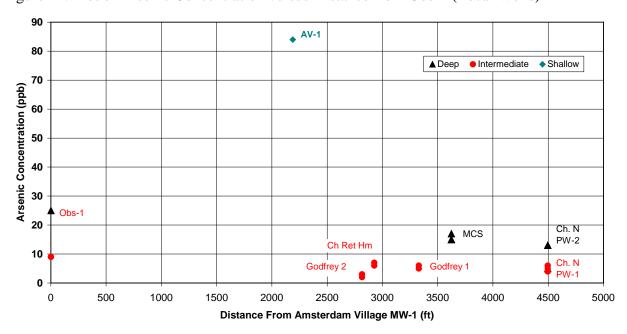



Figure 11: Plot of Arsenic Concentration versus Distance from Obs-1 (All Well)

Figure 12: Plot of Arsenic Concentration versus Distance from Obs-1 (Local Wells)

The arsenic concentration plot on Figure 12 suggests that the Deep zone tends to have higher concentrations, with most above the standard of 10 ppb, while the Intermediate zone is below the standard. Samples from the Shallow zone also contain arsenic at and above the standard. The regional wells are all shallow except for one which is in the Intermediate zone and had an arsenic concentration of 19.4 ppb, higher than the local Intermediate zone wells. The regional Shallow zone wells are likely more representative of conditions specific to that area and may not be of particular relevance to the Shallow zone near the site.

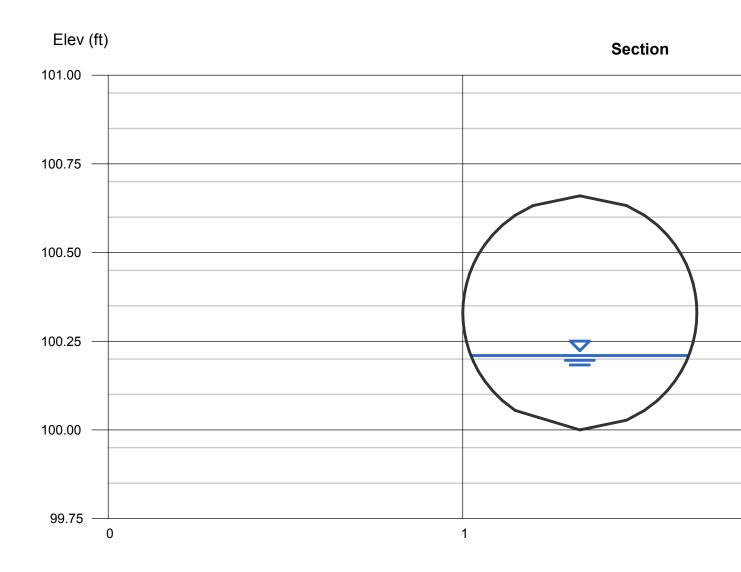
Conclusion

A review of well logs from the Montana Bureau of Mines and Geology (MBMG) indicates that the average well depth in the vicinity of the site is 160 feet with the average yield at about 67gpm, although both depth and yield show a wide range. Most of the wells in the area produce less than 100gpm, with only 11 wells greater than that amount. There does not appear to be any correlation between depth and yield.

A review of regional and local water quality samples shows that groundwater from all three zones is generally similar and can be classified as calcium-carbonate type. Arsenic is prevalent in the groundwater, and data suggests that the Deep zone tends to have higher concentrations, with most above the standard of 10 ppb, while the Intermediate zone is below the standard. Samples from the Shallow zone also contain arsenic at and above the standard.

APPENDIX A

Sanitary Sewer System Calculations


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

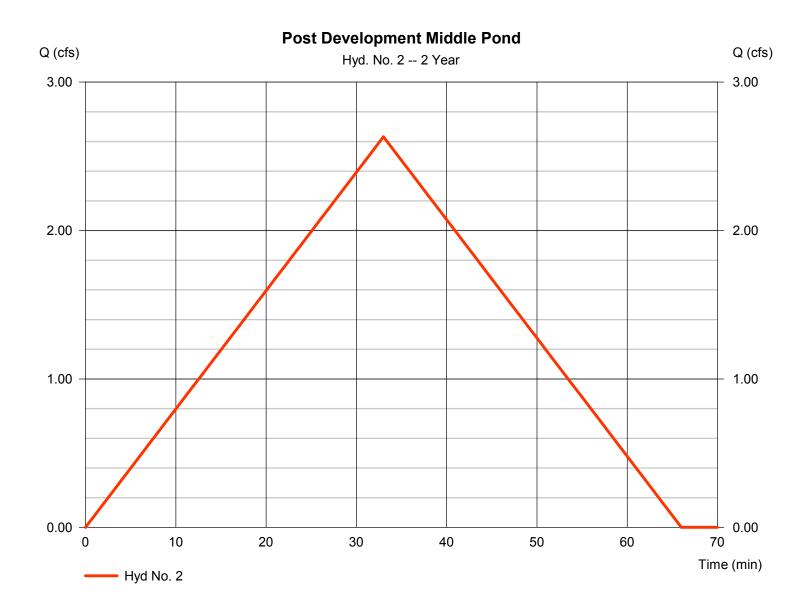
Tuesday, Dec 9 2014

Sanitary Sewer - Peak Flow in 8in Pipe

Circular		Highlighted	
Diameter (ft)	= 0.66	Depth (ft)	= 0.21
		Q (cfs)	= 0.156
		Area (sqft)	= 0.09
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 1.66
Slope (%)	= 0.40	Wetted Perim (ft)	= 0.79
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.19
		Top Width (ft)	= 0.62
Calculations		EGL (ft)	= 0.25
Compute by:	Known Q		
Known Q (cfs)	= 0.16		

APPENDIX B

Storm Water Calculations


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Monday, 12 / 1 / 2014

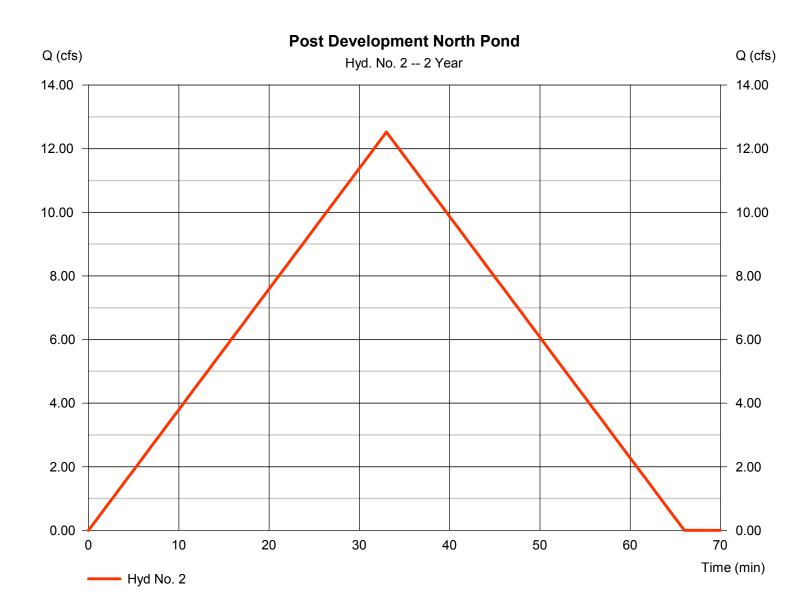
Hyd. No. 2

Post Development Middle Pond

Hydrograph type Peak discharge = 2.632 cfs= Rational Storm frequency = 2 yrs Time to peak = 33 min Time interval = 1 min Hyd. volume = 5,211 cuftRunoff coeff. Drainage area = 11.200 ac= 0.4*Tc by TR55 Intensity = 0.587 in/hr= 33.00 min

^{*} Composite (Area/C) = $[(10.400 \times 0.30) + (0.800 \times 0.90)] / 11.200$

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Monday, 12 / 1 / 2014

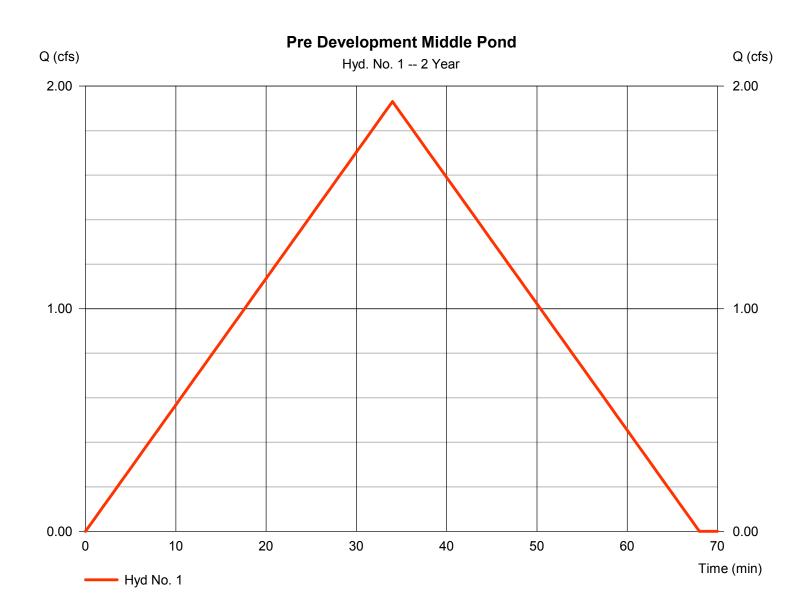
Hyd. No. 2

Post Development North Pond

Hydrograph type Peak discharge = 12.52 cfs= Rational Storm frequency = 2 yrs Time to peak = 33 min Time interval = 1 min Hyd. volume = 24,798 cuft Runoff coeff. Drainage area = 53.300 ac= 0.4*

Drainage area = 53.300 ac Runoff coeff. = 0.4^* Intensity = 0.587 in/hr Tc by TR55 = 33.00 min

^{*} Composite (Area/C) = $[(10.400 \times 0.30) + (0.800 \times 0.90)] / 53.300$


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3

Monday, 12 / 1 / 2014

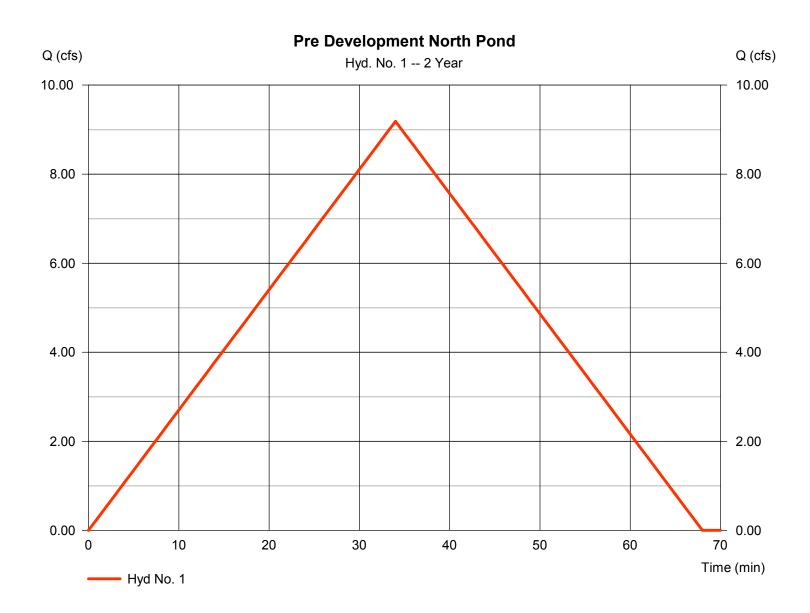
Hyd. No. 1

Pre Development Middle Pond

Hydrograph type = Rational Peak discharge = 1.931 cfsStorm frequency = 2 yrsTime to peak = 34 min Time interval = 1 min Hyd. volume = 3,938 cuft Drainage area Runoff coeff. = 11.200 ac= 0.3*Tc by TR55 Intensity = 0.575 in/hr= 34.00 min

^{*} Composite (Area/C) = [(11.200 x 0.30)] / 11.200

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2014 by Autodesk, Inc. v10.3


Monday, 12 / 1 / 2014

Hyd. No. 1

Pre Development North Pond

Hydrograph type Peak discharge = 9.187 cfs= Rational Storm frequency = 2 yrs Time to peak = 34 min Time interval = 1 min Hyd. volume = 18,742 cuft Drainage area Runoff coeff. = 53.300 ac= 0.3*

Intensity = 0.575 in/hr Tc by TR55 = 34.00 min

^{*} Composite (Area/C) = [(11.200 x 0.30)] / 53.300

Weir Calculations - Middle Pond

The middle pond has is to contain 120,000 gallons (16,042 ft³) of fire pond volume plus the volume for a 2-year event (1,273 ft³). The pond is to be 3 feet deep plus an additional 1 foot of freeboard. At 2.8' the pond holds the required fire pond volume and at 2.99' the pond holds the fire pond volume together with the 2 year event. The weir is to have an elevation at the 2.8'. Conservatively the head at this location would be 1.2'. Using a trapezoidal weir, the width is

Q =
$$3.367$$
bh^{3/2}
1.931cfs = 3.367 b (1.2') ^{3/2}

b = 0.436ft

Weir Calculations - North Ponds

The north ponds are to contain the 2- year storm event of 6,056 cubic feet. The ponds are to each be 2 feet deep plus an additional 1 foot of freeboard. Conservatively the head at this location would be 1'. Using a trapezoidal weir, the width is

Q =
$$3.367bh^{3/2}$$

9.187cfs = $3.367 b (1')^{3/2}$

b = 2.73ft

APPENDIX C

Water Quality and Quantity Data

Water Quality Standards

Map ID:

Gwiold	Drinking Water	Stock	Irrigation
Site Name	Standards		
Twnshp/Rng			
Sec			
Q Sec			
Aquifer			
Depth (ft)			
Comp Date			
Sample			
Sample Date			
Water Temp		1777	0.000
LabpH	(N <u>a</u>	5 <u>444</u> 68	. 222
Lab SC	7.2	1920	7222
Ca (mg/l)	1,77	15	8777
Mg (mg/l)	1	2,000 mg/L	8
Na (mg/l)	250 mg/L [smcl]	2,000 mg/L	see SAR
K (mg/l)	7	1	722
Fe(mg/l)	0.3 mg/L [smcl]		
Mn (mg/l)	0.05 mg/L [smcl]	0.000	2.0 mg/L
Si 02 (mg/l)		1.777	Ü
HCO3(mg/l)	(22	7223	3222
CO3 (mg/l)	1 		()
SO4 (mg/l)	250 mg/L [smcl]	1,500 mg/L	[b]
Cl (mg/l)	250 mg/L [smcl]	1,500 mg/L	3577
NO3 (mg/l)	10 mg/L [mcl]	100 mg/L	0 222
F (mg/l)	4 mg/L [mcl]	2 mg/L	X2122
OPO4(mg/l)			7
Al (ug/l)	50-200 ug/L [smcl]	0.7570	1,000 ug/L
As (ug/l)	10 ug/L [mcl]	50 ug/L	100 ug/L
B (ug/l)	72-1	0 <u>=11</u> 0	3222
Ba (ug/l)	2,000 ug/L [md]	10 -10 33	
Br (ug/l)	NA 91 82 40 T		
Cd (ug/l)	5 ug/L [mcl]	10 ug/L	5 ug/L
Co (ug/l)	<u> </u>	1,000 ug/L	50 ug/L
Cr (ug/l)	100 ug/L [mcl]	1,000 ug/L	100 ug/L
Cu (ug/l)	1,300 ug/L [md]	500 ug/L	200 ug/L
Li (ug/l)	450 00 00	()	2,500 ug/L
Mo (ug/l)		15550	5 ug/L
Ni (ug/l)	722	02220	200 ug/L
Pb (ug/l)	15 ug/L [mcl]	50 ug/L	5,000 ug/L
Sb (ug/l)	6 ug/L [mcl]		N. 155
Se (ug/l)	50 ug/L [mcl]	50 ug/L	20 ug/L
Sr (ug/l)		1000	
Ti (ug/l)	72-	1220	X2122
V (ug/l)	1	(718))	
Zn (ug/l)	5,000 ug/L [smcl]	24,000 ug/L	2,000 ug/L

	11		2	2	3	4
133172	133172	133172	130	166	135593	135737
SE .	USGS		Rich	hard	Tom	Jim
	Kammerman		Bn	yan	Kimm	Scoggins
1S 3E	183E	1S 3E	2S 4E	28 4E	284E	1N 4E
36	36	36	16	16	5	1
BCCD	BCCD	BCCD	BCCA	BCCA	всвв	DDBD
120SDMS	120SD MS	120SD MS	120SDMS	120SDMS	120SD MS	120SD M
113	113	113	148	148	178	
01/01/52	01/01/52	01/01/52			C MATERIAL PROPERTY AND A STATE OF THE STATE	
1952 Q0103	1952 QD 104	2006 Q 1165	1992@1213	2006 Q 1160	1994Q0073	20040054
06/24/52	08/15/52	05/24/06	09/11/92	05/22/06	07/19/93	06/07/04
10.6	46.1		122			12.1
8.1	8.6	6.96	7.85	7.01	7.82	7.75
857	615	417	465	546	830	427
60	6.6	58.9	512	58.3	65.2	57.6
28	0.1	8.24	15.4	17.9	17.2	17.1
61	119	19.8	22.1	34.4	86.9	12.6
11	1.4	7.78	7.2	6.97	16.9	5.93
0.33	1 100	0.005	0.01	0.012	0.01	0.007
	9	0.003	<.002	<0.001	<.002	<0.001
47	7	53.2	50	38.8	51.8	59.9
172	104	167.9	244	215.9	344	264.7
0	4	0	0	0	0	0
83	116	36.8	33.8	67.4	82.7	5.88
75	31	23	9.8	33.1	46.8	2.13
24.9	0.25	2.18 P	0.466	1.19 P	3.35	<0.5 P
0.3	11	0.411	0.53	0.561	0.55	0.318
SWEET.		<0.05	<.05	<0.05	0.54	< 0.05
	*	<10	<20.	<10	<30.	35.8
		5.6	5.6	10	11.1	<1
190	300	44.1	59	67.6	130	39.4
1001		286	116	150	66.9	198
		<50	67	331	<100.	<50
		<1	<2.	<1	<2.	<1
		<2	1	<2	<2.	<2
		2	<2.	3.43	<2.	4.62
		-2	<2.	2.43	<2.	<2
	1	11	<6.	922	<6.	14.6
		<10	<20.	<10	<20.	<10
		<2	<2.	<2	<2.	<2
		2	<3.	<2	<2.	2
		<2		<2		<2
		3.2	<.8	4.08	5.2	<1
		470	256	270	187	268
		<1	<10.	<1	<10.	<1
		10	152	18.6	8.2	≪5
		- 2	860	3.59	<2.	2.52

Key: mg/L = milligrams per Liter; ug/L = micrograms per Liter; --- = Ourrently no

Water Quality Standards

Map ID:

Gwic Id	Drinking Water	Stock	Irrigation	
Site Name	Standards	ĺ.		
Twnshp/Rng				
Sec				
Q Sec				
Aquifer				
Depth (ft)				
Comp Date				
Sample				
Sample Date			85	
Water Temp	1044	(10 0)		
LabpH	1 - 1	5 554	3	
Lab SC	(22		120	
Ca (mg/l)	25	10 2		
Mg (mg/l)	<u> </u>	2,000 mg/L	<u> </u>	
Na (mg/l)	250 mg/L [smd]	2,000 mg/L	see SAR	
K (mg/l)	1	1		
Fe (mg/l)	0.3 mg/L [smd]		1	
Mn (mg/l)	0.05 mg/L [smcl]	190 0	2.0 mg/L	
SiO2 (mg/l)		- 122 0	17.5	
HCO3(mg/l)	(<u> </u>	<u> </u>	3 - 1-20	
CC3 (mg/l)	()			
SO4 (mg/l)	250 mg/L [smd]	1,500 mg/L	[Ы]	
Cl (mg/l)	250 mg/L [smd]	1,500 mg/L		
NO3 (mg/l)	10 mg/L [md]	100 mg/L	180	
F (mg/l)	4 mg/L [mcl]	2 mg/L	0 555	
OPO4 (mg/l)	1000 mm			
Al (ug/l)	50-200 ug/L [smd]		1,000 ug/L	
As (ug/l)	10 ug/L [md]	50 ug/L	100 ug/L	
B(ug/I)	() ·	21 0	144	
Ba (ug/l)	2,000 ug/L [mcl]	- 100 0	1775	
Br (ug/l)	0000000000	8 20	(i)	
Cd (ug/l)	5 ug/L [md]	10 ug/L	5 ug/L	
Co (ug/l)	2437 74	1,000 ug/L	50 ug/L	
Cr (ug/l)	100 ug/L [mcl]	1,000 ug/L	100 ug/L	
Cu (ug/l)	1,300 ug/L [mcl]	500 ug/L	200 ug/L	
Li (ug/l)			2,500 ug/L	
Mo (ug/l)	192	143	5 ug/L	
Ni (ug/l)		-	200 ug/L	
Pb (ug/l)	15 ug/L [md]	50 ug/L	5,000 ug/L	
Sb (ug/l)	6 ug/L [md]	8-8		
Se (ug/l)	50 ug/L [md]	50 ug/L	20 ug/L	
Sr (ug/l)				
Ti (ug/l)	10-1-1	 0	1-4	
V(ug/l)		-	3	
Zn (ug/l)	5,000 ug/L [smd]	24,000 ug/L	2,000 ug/L	

				Е	lasin AG - N	fadison Riv	er				
5	6	3	7	8	9	10	1	11	12	13	14
9323	131	3	9316	9317	16	30	1 3	2	6899	3	890505
Tom	J&J V	a i Dyk	Dile rdire	Steve	June	Marle L	Chick an	d Robe rta	HShipton	TB E Stock	Ker
Rumbaugh	CR	-04	Ribhardson	Livingood	Doak	Thider	WIII	lam s	BJSM-04	We II 2	Mills
1N 2E	1N 2E	1N 2E	1N 2E	1N 2E	1N 2E	1N 2E	1N 2E	1N 2E	1S 2E	1N 1E	1S 2E
22	10	10	22	22	15	22	27	27	21	13	22
CDCC	DBAB	DBAB	ABBB	BADD	CDB	CABD	BBDA	BBDA	DBDB	DDDD	BCCB
120SDMS	120SDMS	120SDMS	120SDMS	120SDMS	120SDMS	120SDMS	120 SDMS	120SDMS	120SDMS	120SDMS	120SDMS
40	-45	45	51.5	79	100	108	145	145	180		Ĭ.
09/09/73	F1704-0-5704-0-707-0-707-0-7		08/13/74	07/10/89	09/04/79	1900 A-100 C-100 C-100	04/02/80	04/02/80			1 KNOW OF THE OWN
19920 1396	19890.0557	199201405	19890.0588	19940.0567	198900567	198900569	19960 0692	20080 0036	1989Q0571	198301141	19890,0568
09/23/92	05/04/89	09/23/92	05/10/89	09/17/93	05/05/89	050589	05/09/96	07/18/07	05/09/89	11/09/63	05,05/89
13.3		11.1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13		11.7	12.3	16.9	13.6	17
8.34	7.9	7.91	8.05	7.66	7.69	7.84	7.72	6.93	8.07	8.09	7.61
703	1202.6	1262	754.1	698	1018.7	658.6	785	678	593.9	1746	1137.4
48.8	95.7	116	56.5	55.4	89.7	46.5	62	48.8	59	113	130
13.7	24.8	31	14.7	15	212	13	16	122	26.4	11.2	31.7
78.9	108	113	84.8	73	84.4	746	78	77.4	27	227	54.9
18	23	26	12	11.3	21	11.3	19	18.7	5.2	28.8	18.5
0.01	0.19	0.113	<.002	<.003	0.014	<.002	<.003	<0.005	<.002	0.19	<.002
<.002	0.039	0.046	<.001	<.002	0.001	<.001	<.002	<0.001	<.001	0.014	<.001
66	55.9	60.8	50.2	54	60.8	49.5	60.8	57.1	50.7	31.9	55.6
376	330	382	360	343	334	334	290	257.7	284.9	188.4	290.8
0	0	0	0	0	0	0	0	0	0	0	0
32.7	239	253	60.5	43.5	193	40.4	111	80.8	24.9	408	216
16.5	58.4	84.6	25	31.4	29.3	18.6	37	30.9	32	192	43.4
1.17	0.01	<.2	1.5	0.59	0.56	0.9	2.63 P	1.57 P	25	52	21.5
0.6	1.6	1.3	2.4	2.49	1.3	22	<1.	1.76	1.4	1.1	0.9
<.1	0.2	<.1	0.1	0.066	0.1	<.1	S. 181.18	<0.05	0.1		<1
<50.	<30.	<50.	<30.	<30.	<30.	<30.	<30.	<2.0	<30.	<30.	<30.
122	120	107	78	120	60	116	89.4	101	45	5.3	21
394	670	621	730	562	540	390	442	424	190	90	220
35		65		42			34.2	24.9			
<100.	<100.	288	<100.	117	<100.	<100.	154	77	<100.	3	<100.
<2.	<2.	<2.	<2.	<2.	<2.	<2.	<2.	40.1	<2.	<2.	<2.
			8	<2.		\$	<2.	⊴0.1		8	
2.	<2.	3.3	<2.	<2.	<2.	<2.	<2.	≪0.1	<2.	5	<2.
2.5	<2.	<2.	8	<2.	16	5	<2.	0.5	3	3	<2.
120	190	208	190	196	100	160	97	117	130	69	60
36	30	52	20	21.4	50	27	44	42.7	<20.	<20.	100
<2.	<10.	2.7	<10.	<2.	<10.	<10.	92	0.169	<10.	<10.	<10.
⋖3.	<40.	<3.	<40.	<2.	< 4 0.	<40.	<2.	40.2	<40.	<40.	<40.
				<2.			<2.	0.39		A POLIN	
				<1.			6.7	5.51		21	
352	640	808	320	317	600	240	488	459	360	1150	870
27	<1.	160	<1.	<10.	3	<1.	<10.	0.595	<1.	14	1
4.3	<1.	<5.	<1.	5.5	<1.	<1.	9.7	7.85	20	5	<1.
12	<3.	6.4	17	10.1	6	687	<2.	0.3	30	160	19

Water Quality Standards

Stock

5,000 ug/L [smcl] 24,000 ug/L 2,000 ug/L

Drinking Water

Gwield

Irrigation

Site Name	Standards	8	
Twnshp/Rng			
Sec			
Q Sec			
Aquifer			
Depth (ft)			
Comp Date			
Sample			
Sample Date			
Water Temp			
LabpH	2 <u>2 24</u> 00		
Lab SC			
Ca (mg/l)	7 <u>50</u> 5	g <u>111</u> 5	
Mg (mg/l)	329	2,000 mg/L	2220
Na (mg/l)	250 mg/L [smcl]	2,000 mg/L	see SAR
K (mg/l)			
Fe(mg/l)	0.3 mg/L [smcl]	5753	12.70
Mn (mg/l)	0.05 mg/L [smcl]		2.0 mg/L
Si O2 (mg/l)		5220	-223
HCO3(mg/l)	92 0		7776
CO3 (mg/l)	9 150		27.50
SO4 (mg/l)	250 mg/L [smcl]	1,500 mg/L	[b]
Cl (mg/l)	250 mg/L [smcl]	1,500 mg/L	111
NO3 (mg/l)	10 mg/L [mcl]	100 mg/L	2223
F(mg/l)	4 mg/L [mcl]	2 mg/L	5573
OPO4(mg/l)		V 5752	57.70
Al (ug/l)	50-200 ug/L [smcl]		1,000 ug/L
As (ug/l)	10 ug/L [mcl]	50 ug/L	100 ug/L
B (ug/l)			
Ba (ug/l)	2,000 ug/L [md]		2.530
Br (ug/l)		8	
Cd (ug/l)	5 ug/L [mcl]	10 ug/L	5 ug/L
Co (ug/l)		1,000 ug/L	50 ug/L
Cr (ug/l)	100 ug/L [mcl]	1,000 ug/L	100 ug/L
Cu (ug/l)	1,300 ug/L [md]	500 ug/L	200 ug/L
Li (ug/l)	3		2,500 ug/L
Mo (ug/l)	227	5220	5 ug/L
Ni (ug/l)	2 = 0		200 ug/L
Pb (ug/l)	15 ug/L [mcl]	50 ug/L	5,000 ug/L
Sb (ug/l)	6 ug/L [mcl]	225	
Se (ug/l)	50 ug/L [mcl]	50 ug/L	20 ug/L
Co (wed)			12.0

Basin AE-Jeff	erson River
50676	10 50
15	16

9258	9271	
Ja	Lane	
Cod	Brothers	
1N 1E	1N 1E	1N 1E
19	19	26
DDCB	DDCB	BDDD
120SDMS	120SD MS	120SD MS
60	60	209
06/15/83	06/15/83	07/08/70
1996 Q0688	2008 Q0 067	1996 Q0689
05/10/96	07/31/07	05/10/96
10.3	11.7	10.7
7.98	7.07	8.45
584	502	912
63.5	49.1	88.3
16.8	13.6	8.9
32.4	31.7	87.8
9.4	9.43	18.7
<.003	<0.005	0.071
<.002	<0.001	0.291
37.4	33.2	27.2
250.34	209.1	184.95
0	10021	3.84
76.1	0 63.1	198
	5.73337	52.756
14	13.8	71.5
1.23 P	0.871 P	<25 P
<1.	0.668	<1.
×20	<0.05	×200
<30.	3.92	<30.
2.6	2.73	19.4
<80.	15.7	<80.
41.1	36	25.1
<125.	<50	593
<2.	<0.1	<2.
<2.	<0.1	<2.
<2.	<0.1	<2.
<2.	0.325	<2.
23	19.9	27
16.7	16.2	12.6
92	0.138	13.2
<2.	<0.2	<2.
<2.	<0.1	<2.
<1.	1.09	4.3
765	784	1157
<10.	<1.0	< 10.
8.1	0.43	<5.
<2.	<0.2	9

 $\frac{\text{Key: } \textbf{mg/L} = \text{milligrams per Liter; } \textbf{ug/L} = \\ \text{micrograms per Liter; } --- = \text{Ourrently no}$

4-1

Sr (ug/l) Ti (ug/l)

V (ug/l)

Zn (ug/l)

	Water Quality	120								12			21.0				200			
	Standards		Churchhill North				Churc	Churchhill Ret. Home Godfrey Canyon Estates				tates	Manhatten Christian Schl							
	Map ID:		30	A				В			С			D		E			F	
Gwic Id	Drinking Water		208	3723			220	348	- 9		90740		90	815	146	054		225	5403	
Site Name				hill North				hill North		Church		ment Hm			inyon Esta		Mar		hristian Sc	hool
500.007.00000000				A41				N-2		94.59000000	Wel 2		W	el 1		ell 2			ell 2	
Twnshp/Rng				3E			0.0	3E		1	183E			- 60	3E			- C - C - C	3E	
Sec Q Sec		-		14 9DB				14 9DB		-	CBDA	3	-	34 C.C.		9D	8		ts CA	
Aguifer		+	1	1			1	1	T 0	(CBDA			Ī	- 00					
Depth (ft)			2	80			4	40	- 3		230		1	88	14	44		4	63	
Comp Date			01/3	30/04			06/0	6.05	V		06/23/77		01/2	24/83	07/0	05/94		05/0	01/06	ac 15
Sample																				
Sample Date	10	12/12/05	07/24/07	01/08/08	04/01/08	12/12/05	04/30/07	01/08/08	04/01/08	03/02/04	06/07/04	10/10/06	06/21/04	03/21/07	06/21/04	03/21/07	05/17/06	11,07,06	06/21/07	01/15/08
Water Temp Lab pH		7.6			—	7.7	83	4	1	1	-		18 - 1		8 - 3	+ V	7.8	7.9	\vdash	
Lab SC		449		0		419		ii.		1			9			. 9	412	408		8 3
TDS(mg/l)		310				261	Š.													
Ca (mg/l)	11						12	Ì									40	41		
Mg (mg/l)	1 2000						83	1	1						83	19	5	5		1
Na (mg/l)	250 mg/L [smcl]			B 1			2	8			- 8						34	34		8 8
K (mg/l)		_			_		8						<u> </u>							
Fe (mg/l)	0.3 mg/L [smcl] 0.05 mg/L [smcl]			12				12			-			_		3 31	0.15	<0.01		
Mn (mg/l) Si C2 (mg/l)	0.05 mg/c (smc)	1		3 -	_		8	3	8 8		- 8	\vdash	(V)	_	8 1	8 8	10 1			-
HCO3(mg/l)		1					83		* K	1			18 - 1		3	2 (2		1 1	_	1
C03(mg/l)							3	4							3 3					§
SO4 (mg/l)	250 mg/L [smcl]	35				34	230						6		20	5 69	28	29		
Cl (mg/l)	250 mg/L [smcl]	17				16								totost			15	14		
N 03 (mg/l)	10 mg/L [mcl]	2.75	3		3.32	1.44	2.84				3.2	3.15	4.23	3.69	3.05	3.55				
F(mg/l)	4 mg/L [mcl]	0.31	<0.1			0.27	0.29	9	3	-	0.42		0.29	0.21	0.22	0.19			_	
OPO4 (mg/l) Al (ug/l)	50-200 ug/L [smcl]	-			—		83		3 8	-			(A)		83 - 3	0 0	+		\vdash	0 1
As (ug/l)	10 ug/L [mcl]	6	5	4	4	<10	5	13	13	6		7	6	5	3	2		15	17	15
B (ug/l)	5.6.2		130.70																	
Ba (ug/l)	2,000 ug/L [mcl]	100	100			<2000	100				120		230	200	277	200				
Br (ug/l)				8 1			ă .	š.								3 3				8 1
Cd (ug/l)	5 ug/L [mcl]	≪5	<1			≪5	<1	4			<1		<1	<1	<1	<1				
Co (ug/l)	 100 ug/L [mcl]	<100	<10		-	<100	<10		10 6	-	<10	\vdash	<1	<10	<1	<10	5 -		\vdash	-
Cr (ug/l) Cu (ug/l)	1,300 ug/L [mcl]	×100	× 10			×100	× 10		0 0		×10		81	8 10	NI.	710			\vdash	
Li (ug/l)		1										+			-	- 0		- 8		
Mo (ug/l)	0 (200)			()			83	4	10 10	4			M		8 9	2 83				9 1
Ni (ug/l)	1	<100	<10			<100	<10	2		<10	- 3		<10	<10	<10	<10				
Pb (ug/l)	15 ug/L [mcl]		10,1				83 2000	d.	, l					10,1	82 35 3					
Sb (ug/l)	6 ug/L [mcl]	48	3			≪6	3			3			<1	3	<1	3				
Se (ug/l)	50 ug/L [mcl]	<50	≪5			<50	<5				≪5		<2	≪5	<2	<5				8 1
Sr (ug/l)		\vdash			-		83	4		1	-		/á 	-	83 - 9	9 0	-		\vdash	
Ti (ug/l) V(ug/l)			 					si .	10 9	-			10	\vdash		. 9			\vdash	3
	25 25 25 3Y						8												\vdash	
Zn (ug/l)	5,000 ug/L [smd]																			

	Water Quality								Data Ranges									
	Standards						- 9	Site Wells					- 8	Regio	onal	Lo	ca	
	Map ID:		0 3		į.													
Gwield	Drinking Water			236239			i		236240	ġ.			230271					
Site Name			AV-1				AV-2			0bs-1								
Twnshp/Rng			1S 3E				ij.		18 3E		į.		183E	9 1				
Sec				14			da .		14		- 3		13	- 2				
Q Sec				DBA					BBA				DDC	2 1				
Aquifer												00222						
Depth (ft)				165					147.5			460		375				
Comp Date			- 3	6/2/2007					6/2/2007		- 8		09/27/06					
Sample		06.04/07	000707	08/28/07	11/29/07	050000	06/04/07	06/27/07	08/28/07	11/29/07	05/03/08	04/15/08	04/16/08	05/02/00	0.5	88	B.Sim	Maria
Sample Date		00,04/07	06/27/07	D0/20/D7	11/29/07	05/03/08	00/04/07	00/2/707	00/20/07	11/29/07	03/03/08	D4/13/D8	04/10/00	05/03/08	Min	Max	Min	Max
Water Temp		7.0	7.7	0.0	7.5	7.7	7.0			122		7.0	0.0	7.7	10.3	46.1		
Lab pH		7.8 657	7.7 669	8.3 632	7.5 664	7.7 648	7.6	7.6	8.3	7.5	7.5	7.9 472	8.0 550	7.7 532	6.93	8.6	7.6	7.9
Lab SC		1 100000000	VE 20/3/5	X23257.00, 1	25.00	2000	435	443	435	441	430	4/2	550	15 C1000C 10	417	1746	408	449
TDS (mg/l)		480	425	430	419	469	292	269	283	259	365	62	72	394 67		400	261	310
Ca (mg/l)	1	-	83 - 8			22 9					222	14	13	10	6.6 0.1	130 31.7	40 5	41 5
Mg (mg/l) Na (mg/l)	250 mg/L [smcl]	-	60 1			120				_		33	30	32		227	34	34
	250 mg/L [smci]	_	0 0			120				_	28 55	17	14	11	12.6 1.4	28.8	34	34
K (mg/l) Fe(mg/l)	0.3 mg/L [smd]		8 1		8	4.8					1.24d	10.5	8.01	0.11	<0.005	0.33	0.15	0.15
Mn (mg/l)	0.05 mg/L [smd]		10 1			4.0					0.22d	0.17	100	<0.1	<0.001	0.33	0.15	0.15
Si O2 (mg/l)	0.05 mg/c [sma]	-	**					_	-		0.220	0.17	0.20	10.1	7	66		× × × × ×
HC 03 (mg/l)			8 8			331					279	214	229	222	104	382	52000	
CO3 (mg/l)			6 -			<1					<1	0	0	<1	0	4	10000	
SO4 (mg/l)	250 mg/L [smcl]		0.0			51					23	28	43	41	5.88	408	28	35
CI (mg/l)	250 mg/L [smcl]	1	1	2	1	1	2	1	1	ND	<1	14	22	19	2.13	192	14	17
NO3 (mg/l)	10 mg/L [mcl]	0.58	0.48	0.56	0.56	0.66	0.64	0.48	0.75	0.64	0.67	1.74	3.11	3.14	<0.2	24.9	1.44	423
F(mg/l)	4 mg/L [mcl]	0.00	0.2	0.00	0.00	0.00	0.01	10.10	0.10	0.01	0.01			6 6	<1	11	<0.1	0.42
OPO4 (mg/l)			8 8											3 3	<0.05	0.54		
Al (ug/l)	50-200 ug/L [smd]					<100 d					700d	16,300	8,000	<100	2	35.8	7	
As (ug/l)	10 ug/L [mcl]					84					10d	25	9	9	2.6	122	2	17
B (ug/l)			0.00			- 7/					11.55			100	15.7	730		
Ba(ug/l)	2,000 ug/L [mcl]		8		1	200	1				8	300	300	200	24.9	286	100	277
Br (ug/l)			9 0				4				8 8			3 3	<50	593	50-2	
Cd (ug/l)	5 ug/L [md]		100			<1						≪5	<5	<1	< 0.1	<2	<1	<5
Co (ug/l)												0.000		<100	< 0.1	<2	7	
Cr (ug/l)	100 ug/L [mcl]					<10						<100	<100	<10	< 0.1	5	<1	<100
Cu (ug/l)	1,300 ug/L [mcl]		10											<100	0.325	16		
Li (ug/l)					8		8 8							<100	-68	208	80	8
Mo (ug/l)			155										5	<100	<10	100	270000	
Ni (ug/l)	***				l l	<10						ND	ND	<10	0.138	13.2	<10	<100
Pb (ug/l)	15 ug/L [mcl]		6.0											<100	<0.2	<40	23.60	·
Sb (ug/l)	6 ug/L [md]		7								ľ T	46	<6	3	0.39	0.39	<1	<6
Se (ug/l)	50 ug/L [mcl]				8	<5	8 8				8 8	<50	<50	<5	<1	21	<2	<50
Sr (ug/l)			80						Į.					400	187	1157	92335	
Ti (ug/l)					l l		J I				J. C			<100	0.595	160	3	
V (ug/l)	***		F.5											<100	0.43	20	33.003	VI()
Zn (un/l)	5,000 ua/L [smc]]		10				17		17					<100	0.3	860	200	V

	T 7	1
А	V -	

Site Name: AMSTERDAM VILLAGE

GWIC Id: 236239

Section 1: Well Owner

Owner Name

AMSTERDAM VILLAGE Mailing Address

10180 COTTONWOOD ROAD

City State Zip Code **BOZEMAN** MT 59718

Section 7: Well Test Data

Total Depth: 175 Static Water Level: 147.6 Water Temperature:

Air Test *

5 gpm with drill stem set at 170 feet for 1 hours.

Time of recovery 1 hours. Recovery water level 147.6 feet. Pumping water level _ feet.

Section 2: Location

Township	Range	Section	Quarter Sections
01S	03E	14	NE1/4 NW1/4 SE1/4
C	ounty		Geocode
GALLATIN	-		

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Latitude Longitude Geomethod **Datum** 45.7502 111.3172 NAV-GPS **WGS84 Altitude Datum** Date

Section 8: Remarks

Section 9: Well Log **Geologic Source**

Description

From To

Block Lot Unassigned Addition

AMSTERDAM VILLAGE Section 3: Proposed Use of Water

MONITORING (1)

Section 4: Type of Work Drilling Method: ROTARY

Section 5: Well Completion Date Date well completed: Thursday, May 31, 2007

Section 6: Well Construction Details

Borehole dimensions

Casing

porenole almension						
From	То	Diameter				
0	175	6.6				

			Wall	Pressure					
From	То	Diameter	Thickness	Rating	Joint	Туре			
-3	120	6	0.25		WELDED	A53B STEEL			
-1.5	155	2		220 N		PVC- SCH 40			
Comp	Completion (Perf/Screen)								

0	2	TOP SOIL
2	13	SILT SAND
13	21	SILTY CLAY & SAND
21	29	FINE SAND GRAVEL & COBBLES
29	31	COURSE SAND
31	31.5	FINE SAND
31.5	77	SILT SAND
77	79	FINE SAND GRAVEL & COBBLES
79	81	COURSE SAND
81	91	75% COURSE SAND W/ GRAVELS
91	94	SILT SAND & FINE SAND
94	113	SILT SAND & SILTY CLAY
113	117	75% FINE SAND W/ MED GRAVELS
117	132	BROWN CLAY W/ LITE BROWN CLAYSTONE
132	136	FINE SAND & GRAVEL

Driller Certification

of Size of From To Diameter Openings Openings Description

155 165 2 1420 .010 FACTORY SLOTTED

Annular Space (Seal/Grout/Packer)

Cont. From To Description Fed? 145 BENTONITE CHIPS 145 175 10/20 SILICA SAND

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

Name:TROY HAUSER Company: RED TIGER DRILLING License No:MWC-365 Date 5/31/2007 Completed:

From	То	Description
136	137	SANDSTONE W/ FINE SAND
137	152	SANDSTONE W/ CLAY STREAKS
152	156	FINE HEAVING SAND
156	159.5	FINE SAND COUSE GRAVEL & CLAY STREAKS
159.5	161	CLAY
161	173	SANDSTONE & CLAY STONE
173	175	FINE SAND & MED GRAVEL W/ 5 GPM WATER

AV-2

Site Name: AMSTERDAM VILLAGE

GWIC Id: 236240

Section 1: Well Owner

Owner Name

AMSTERDAM VILLAGE Mailing Address

10180 COTTONWOOD ROAD

City State Zip Code **BOZEMAN** MT 59718

Section 2: Location

	Township Range		Section	n Quarter	Quarter Sections		
	01S	03E	13	NE1/4 NW1/4 NW1/4			
County				Geoc	ode		
G	SALLATIN						
	Latitude Long		de	Geomethod	Datum		
	45.7536	111.318	36	NAV-GPS	WGS84		
Altitude		M	lethod	Datum	Date		

Addition Block Lot

AMSTERDAM VILLAGE

Section 3: Proposed Use of Water

MONITORING (1)

Section 4: Type of Work

Drilling Method: ROTARY

Section 5: Well Completion Date Date well completed: Friday, June 01, 2007

Section 6: Well Construction Details

Borehole dimensions From To Diameter 0 175 6.9

Casing

From	То		Wall Thickness	Pressure Rating	Joint	Туре
-2	120	6.6	0.25		WEIDED	A53B STEEL
-2	138	2		1220 O	FLUSH THREAD	PVC- SCHED 40

Completion (Perf/Screen)

of Size of From To Diameter Openings Openings Description 138 | 148 | 2 1420 FACTORY SLOTTED

Annular Space (Seal/Grout/Packer)

			Cont.
From	То	Description	Fed?
0	136	BENTONITE CHIPS	
136	175	10/20 SILICA SAND	

Section 7: Well Test Data

Total Depth: 175

Static Water Level: 142.8 Water Temperature:

Air Test *

2 gpm with drill stem set at 174 feet for 1 hours.

Time of recovery <u>1</u> hours. Recovery water level 142.8 feet. Pumping water level feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Section 8: Remarks MONITOR WELL #2

Section 9: Well Log **Geologic Source**

Unassigned

From	То	Description
0	1.5	TOP SOIL
1.5	6	SILTY SAND
6	28	SILTY SAND & CLAY
28	54	FINE SAND GRAVEL & COBBLES
54	56	CLAY & SILTY CLAY
56	57	FINE SAND
57	81	FINE SAND GRAVEL & COBBLES
81	93	SILT SAND
93	95	FINE SAND GRAVEL & COBBLES
95	96	FINE SAND & SILT SAND
96	115	TITE FINE SANDS SHARP GRAVELS & COBBLES
115	149	SILTY CLAY & SANDSTONE
149	153	FINE SAND W/ SILT SAND
153	155	CLAY
155	158	FINE SAND & SILT SAND
Drille	r Cert	ification

All work performed and reported in this well log is in compliance with the Montana well construction standards.

This report is true to the best of my knowledge.

Name:TROY HAUSER Company: RED TIGER DRILLING License No:MWC-365

Date 6/1/2007 Completed:

From	То	Description
158	175	STREAKED CLAY SANDSTONE FINE SAND & GRAVEL W/ 2 GPM WATER

Obs-1

Site Name: CTA LANDWORKS

GWIC Id: 230271

Section 1: Well Owner

Owner Name CTA LANDWORKS Mailing Address

10180 COTTONWOOD ROAD

City State Zip Code **BOZEMAN** MT 59718

Section 2: Location Township Range

Altitude		Metho	d	Datum	Date	
	45.7446	111.3141		NAV-GPS	WGS84	
	Latitude	Longitude		Geomethod	Datum	
	GALLATIN					
	Co	ounty		Geocode		
	01S	03E	14	SW1/4 SE	1/4 SE1/4	

Section

Addition **Block**

THE VIRIDIAN VILLAGE

Section 3: Proposed Use of Water

TEST WELL (1) MONITORING (2)

Section 4: Type of Work Drilling Method: ROTARY

Section 5: Well Completion Date

Date well completed: Wednesday, September 27, 2006

Section 6: Well Construction Details

Borehole dimensions From To Diameter 0 460 7.5

4606

Casing							
			Wall	Pressure			
From	То	Diameter	Thickness	Rating			

0.25

There are no completion records assigned to this well.

Annular Space (Seal/Grout/Packer)

There are no annular space records assigned to this well.

Section 7: Well Test Data

Total Depth: 460 Static Water Level: 409 Water Temperature:

Air Test *

Quarter Sections

100 gpm with drill stem set at 440 feet for 2 hours. Time of recovery 2.5 hours.

Recovery water level 409 feet. Pumping water level feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Section 8: Remarks

Section 9: Well Log **Geologic Source**

Unassigned

			From	То	Description
			0	2	TOP SOIL
			2	18	LITE BROWN CLAY
			18	24	SILTY CLAY W/TRACES GRAVEL
			24	38	FINE SAND GRAVEL & COBBLES
mber 27, 2006			38	39	CLAY
ils			39	40	FINE SAND & GRAVEL
			40	41	CLAY
			41	75	FINE SAND & GRAVEL
			75	93	LITE BROWN SILT & CLAYSTONE
			93	97	LITE BROWN CLAY & SILTY CLAY
е			97	103	SILT SAND
Joint Type		103	107	FINE SAND & GRAVEL	
WELDED A53B STEEL		107	135	LITE BROWN SANDSTONE W/SILTSTONE	
d to this well.		135	138	LITE BROWN SILTY CLAY	
			138	140	LITE BROWN SANDSTONE W/SILTSTONE

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards.

This report is true to the best of my knowledge.

Name:TROY HAUSER Company: RED TIGER DRILLING License No:WWC-598 Date 9/27/2006 Completed:

Site Name: CTA LANDWORKS GWIC ld: 230271 Additional Lithology Records From To Description 140 164 LITE BROWN CLAY & SILTY CLAY 164 168 LITE BROWN SANDSTONE W/BLACK & RED COURSE SAND

		LITE DE CAUL OF TAKEN						
168		LITE BROWN SILTY CLAY						
171		LITE BROWN SILTY CLAY						
174		LITE BROWN SANDSTONE W/ TRACES WHITE LIMESTONE						
178	186	BROWN CLAY						
186	191	FINE SAND & GRAVEL						
191	194	FINE SAND W/SILTSAND						
194	197	BROWN CLAY						
197	205	CLAYSTONE W/CLAY STREAKS						
205	224	BROWN CLAY						
224	231	FINE SAND & GRAVEL						
231	234	SANDSTONE						
234	237	BROWN CLAY						
237	247	FINE/COURSE SAND W/ MED GRAVELS						
247	253	BROWN CLAY						
253	256	SANDSTONE W/CLAYSTONE						
256	257	BROWN CLAY						
257	265	SANDSTONE W/CLAYSTONE						
265	269	FINE SAND & GRAVEL W/ 50 GPM WATER						
269	271	FINE SAND & GRAVEL						
271	277	SILTSTONE						
277	287	FINE SAND & GRAVEL W/ 12 GPM WATER						
287	289	SANDSTONE W/SILTSTONE						
289	295	BROWN SILTY CLAY						
295	300	FINE/COURSE SAND W/ MED GRAVELS W/20 GPM WATER						
300	316	SILTSTONE W/CLAYSTONE						
316	317	MED GRAVELS						
317	318	CLAY W/ SILTYCLAY STREAKS						
318	320	FINE SAND & GRAVEL						
320	329	SANDSTONE						
329	335	CLAYSTONE						
335	340	FINE/COURSE SAND W/40 GPM SANDY WATER						
340	371	FINE/COURSE SAND W/ MED GRAVELS W/100 GPM SANDY WATER						
371	396	CLAYSTONE W/SANDSTONE & CLAY STRINGERS						
396	400	CLAYSTONE W/HEAVING SANDS 85 GPM SAND& WATER						
400	413	SOFT SANDSTONE W/FINE/COURSE SAND STREAKS						
413	416	CLAY W/CLAYSTONE STREAKS						
416		SILTSTONE W/FINE SAND STRINGERS						
426	460	FINE/COURSE SAND W/ MED GRAVELS 100 GPM WATER DEVELOPING FROM 440 FT						

Churchill North PW-1

Site Name: CHURCHILL NORTH SUBDIVISION

GWIC Id: 208723

DNRC Water Right: C30005083

Section 1: Well Owner

Owner Name

CHURCHILL NORTH SUBDIVISION

Mailing Address 331 RUNJE BLVD

City State Zip Code **MANHATTAN** MT 59741

Section 2: Location

Township Ran		Section	Quarter Sections		
01S	03E	13 NW1/4 SE1/4 N		W 1/4 NW 1/4	
	County		Geocode	•	
GALLATIN					
Latitude	Lo	ngitude	Geomethod	Datum	
45.755558	111	.306007	TRS-SEC	NAD83	
Altitude	•	Method	Datum	Date	

Addition **Block** Lot

CHURCHILL NORTH

Section 7: Well Test Data

Total Depth: 280

Static Water Level: 105.25 Water Temperature:

Pump Test *

Depth pump set for test 245 feet.

182 gpm pump rate with 38.3 feet of drawdown after

16 hours of pumping. Time of recovery 39 hours. Recovery water level 105.7 feet. Pumping water level 143.55 feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Section 8: Remarks

Section 3: Proposed Use of Water

PUBLIC WATER SUPPLY (1)

Section 4: Type of Work

Drilling Method: ROTARY

Section 5: Well Completion Date

Date well completed: Friday, January 30, 2004

Section 6: Well Construction Details

Borehole dimensions From To Diameter 0 25 10 25 280 6

Casing

	L		1 -	Pressure					
From	То	Diameter	Thickness	Rating	Joint	Type			
-1.8	252.5	6	0.250		WELDED	STEEL			
Completion (Perf/Screen)									

of Size of From To Diameter Openings Openings Description SCREEN-248 2595 100 CONTINUOUS-

Annular Space (Seal/Grout/Packer)

From	То	Description	Cont. Fed?
0	25	BENTONITE	
248	248	FIG K	

Section 9: Well Log **Geologic Source**

Unassigned

	5.1.a.e.g.19.1.e.g			
From	То	Description		
0	21	SILTY BROWN CLAY		
21	36	BROWN CLAY WITH SMALL PEBBLES		
36	40	SANDY SAND AND GRAVEL		
40	128	SANDS AND GRAVELS SOME MIXED SILTS		
128	153	CLEAN SAND AND GRAVEL		
153 176 176 188		SOFT BROWN SILTSTONE AND BLENDING TO SILTY CLAY		
		SOUPY SAND WITH SCATTERED GRAVELS		
188	192	LIGHT TAN SILTSTONE/ HARDPAN		
192	197	MEDIUM BROWN FIRM SILTSTONE		
197	208	HEAVING SAND TO FINE GRAVEL		
208	213	FINE SAND WITH MIXED GRAVEL SOME CLAY		
216	219	FINE HEAVING SAND		
219	244	TAN SILTSTONE/ HARDPAN DRY		
244	250	SILTY BROWN CLAY AND CLAYSTONE / SILTSTONE MIX		
257	264	SAND AND GRAVEL, SLIGHTLY HEAVING		
Drille	r Cert	ification		

All work performed and reported in this well log is in compliance with the Montana well construction standards.

This report is true to the best of my knowledge.

Company:POTTS DRILLING INC License No:WWC-512 Date 1/30/2004 Completed:

From To Description		Description
264	280	SILTSTONE, CLAYSTONE, SOFT SANDSTONE, DRY

STAINLESS

Churchill North PW-2

Site Name: CHURCHILL NORTH SUBDIVISION

GWIC Id: 220348

Section 1: Well Owner

Owner Name

CHURCHILL NORTH SUBDIVISION, CHURCHILL NORTH

SUBDIVISION Mailing Address

331 KUNJE BLVD.

City State Zip Code

59741 MANHATTAN MT

Section 2: Location

Township	Range	Section	Quarter Sections
01S	03E	30	SE1/4 NE1/4 SW1/4 NW1/4
	County		Geocode
CALLATIN	-		

CALLATIN			
Latitude	Longitude	Geomethod	Datum
45.7533	111.3039	NAV-GPS	NAD83
Altitude	Method	Datum	Date

Block Addition Lot

CHURCHILL NORTH

Section 3: Proposed Use of Water

PUBLIC WATER SUPPLY (1)

Section 4: Type of Work

Drilling Method: ROTARY

Section 5: Well Completion Date

Date well completed: Monday, June 06, 2005

Section 6: Well Construction Details

Borehole dimensions From To Diameter 0 25 10 25 440 6

Casing

	,						
			Wall	Pressure			
From	То	Diameter	Thickness	Rating	Joint	Туре	
2	434	6	0.250		WELDED	A53B STEEL	

There are no completion records assigned to this well.

Annular Space (Seal/Grout/Packer)

From	То	Description	Cont. Fed?
0	25	BENTONITE	

Section 7: Well Test Data

Total Depth: 440

Static Water Level: 102.9 Water Temperature: 15.56

Pump Test *

Depth pump set for test 242 feet.

150 gpm pump rate with 88 feet of drawdown after 11

hours of pumping.

Time of recovery 14 hours. Recovery water level 102 feet. Pumping water level feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Section 8: Remarks

THIS WELL IS DESIGNATED AS CHURCHILL NTH. PW2 DEQ ID # MT0004431

Section 9: Well Log **Geologic Source**

Unassigned

From	To	Description			
0	18	SANDY CLAY			
26	39	DRY SAND & GRAVEL			
26	115	DRY CLAYBOUND SAND & GRAVEL			
115	158	SAND AND GRAVEL			
158	172	DIRTY SAND & GRAVEL			
172	185	SOFT TAN SILTSTONE			
185	202	HEAVING SAND			
202	227	CLAYS AND SILTSTONES			
227	231	FINE TO COUSE SAND 15 GPM			
231	250	TAN SILTSTONE			
250	257	SILT AND SAND, HEAVING			
257	269	TAN CLAY			
269	270	FINE SAND			
270	271	CLAY			
271	281	SILTSTONE & SAND			
Duilley Contidention					

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards.

This report is true to the best of my knowledge.

Name:

Company: POTTS DRILLING INC License No:WWC-512

Date Completed: 6/6/2005

Site Name: CHURCHILL NORTH SUBDIVISION

GWIC Id: 220348

Additional Lithology Records

From To Description

281	299	CLAY			
299	301	COURSE SAND			
301	314	SOUPY SAND, CLAYS, SILTS, HEAVING			
314	319	SOUPY SAND TO FINE GRAVELS			
319	337	FINE SAND TO MED. COURSE GRAVELS W/ LENSES OF CLAY, SOME SANDS LIGHTLY CEMENTED, LOTS OF WATER BUT KEEPS YEILDING SAND EVEN W/ SCREEN			
337	345	SOUPY SANDS, SOME COURSES			
345	354.5	CLAY			
354.5	367	SANDSTONE, MOD. SOFT, BLEEDS SAND			
367	392	CLAY, CLAYSTONE, MUDSTONE, SILTSTONE, MAKES WATER BUT DIRTIES UP WHEN SURGED			
392	394	STICKY CLAY			
394	396	CLAY			
396	399	SANDSTONE			
399	402	CLAY			
402	405	SAND, FINE TO MED. W/ SCATTER 1/4 -3/8 PEBBLES, MOD. CONSOLIDATED, 100 GPM			
405	410	SEMI CONSOLIDATED SAND, FINE TO MED.			
410	411	WHITE CEMENTED GRAVEL			
411 435		FINE TO MED. COURSE SAND W/ 20% SMALL TO MED. GRAVELS. STRATIFIED BETWEEN LENSES OF FIRM BROWN TO GRAY SANDSTONE. SAND AND GRAVEL CAVES, SANDSTONE IS CONSOLIDATED			
435	440	FIRM TO HARD GRAY SANDSTONE, LOTS OF WATER			

Godfrey Canyon Estates Well 1 Site Name: GODFREY CANYON ESTATES

GWIC Id: 90815

Section 1: Well Owner

Owner Name

DYKSTERHOUSE HENRY

Mailing Address

State Zip Code

Section 2: Location

	Township Range Section		Quarter Sections				
	01S 03E 24		SW1/4 SW1/4 NW1/4				
	Co	ounty	Geoco	de			
(GALLATIN						
	Latitude	Longi	tude	Geomethod	Datum		
	45.736917	111.30	7043	TRS-SEC	NAD83		
	Altitude	M	lethod	Datum Da			

Addition **Block** Lot

Section 3: Proposed Use of Water

PUBLIC WATER SUPPLY (1)

Section 4: Type of Work

Drilling Method: CABLE

Section 5: Well Completion Date

Date well completed: Monday, January 24, 1983

Wall

Section 6: Well Construction Details

There are no borehole dimensions assigned to this well.

From To Diameter Thickness Bating | Joint Type

Pressure

Casing

LIOIII	10	Diameter	THICKIES	nauiig	JOIIIL	ı ype	
0	152	8					
Comp	Completion (Perf/Screen)						
			# of	Size of			
From	То	Diameter	Openings	Openings	Descri	ption	
142	152	8			SCRE	ΞN	
	_						

Annul	ar	Space (Seal	Grout	/Packer)
			Cont.	
From	То	Description	Fed?	

³⁰ CEMENT

Section 7: Well Test Data

Total Depth: 188 Static Water Level: 83.8 Water Temperature:

Pump Test *

Depth pump set for test _ feet.

64 gpm pump rate with _ feet of drawdown after 24

hours of pumping.

Time of recovery _ hours.

Recovery water level feet.

Pumping water level 139.3 feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Section 8: Remarks

Section 9: Well Log **Geologic Source**

Unassigned

From	То	Description
0	3	TOPSOIL
3	11	CLAY
11	27	CLAYBOUND GRAVEL
27	51	SANDY CLAY
51	82	SANDY GRAVEL
82	83	GRAVEL-WET
83	107	SANDSTONE & SAND
107	110	SANDY CLAY
110	117	SLOPPY SAND-CLAYBOUND
117	129	CLAY
129	140	SANDY CLAY
140	143	COARSE SAND
143	147	SAND & GRAVEL
147	152	SAND & COARSE GRAVEL
152	158	CLAY

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

Company: VAN DYKEN DRILLING INC License No:WWC-306 Date 1/24/1983 Completed:

From	То	Description
158	160	CEMENTED GRAVEL
160	167	CLAY
167	168	CEMENTED GRAVEL
168	178	CLAY
178	188	CLAYBOUND GRAVEL; SLOPPY SAND & GRAVEL

Godfrey Canyon Estates Well 2

Site Name: GODFREY CANYON ESTATES * WELL #2 Section 7: Well Test Data

GWIC Id: 146054

DNRC Water Right: 91467

Section 1: Well Owner

Owner Name

GODFREY CANYON ESTATES

Mailing Address

7200 CHURCHILL RD

City State Zip Code MANHATTAN MT 59741

Section 2: Location

Township	Range	Section	Quarter Sections
01S	03E	24	SE1/4 NW1/4 NW1/4
С	ounty		Geocode

GALLATIN

CALLATIN			
Latitude	Longitude	Geomethod	Datum
45.740642	111.304626	TRS-SEC	NAD83
Altitude	Method	Datum	Date

Addition Block Lot

GODFREY CANYON ESTATES

Section 3: Proposed Use of Water

DOMESTIC (1)

Section 4: Type of Work

Drilling Method: ROTARY

Section 5: Well Completion Date

Date well completed: Tuesday, July 05, 1994

Section 6: Well Construction Details

Borehole dimensions

From	То	Diameter
0	20	12
20	144	8

Casing

	<u> </u>					
			"	Pressure		
From	То	Diameter	Thickness	Rating	Joint	Туре
-1.5	132	8	0.322			STEEL

Completion (Perf/Screen)

•			# of	Size of	
From	То		l		Description
132	137	8		70	SLOT SCREEN

Annular Space (Seal/Grout/Packer)

			Cont.
From	То	Description	Fed?
0	20	CEMENT	

Total Depth: 144

Static Water Level: 67.67 Water Temperature:

Pump Test *

Depth pump set for test _ feet.

65 gpm pump rate with _ feet of drawdown after 24

hours of pumping.

Time of recovery _ hours. Recovery water level feet. Pumping water level 120 feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Section 8: Remarks

Section 9: Well Log **Geologic Source**

Unassigned

From	То	Description
0	1	TOPSOIL
1	17	CLAY WITH SOME SMALL GRAVEL
17	24	GRAVEL AND SAND
24	36	HARD BROWN CLAY
36	43	GRAVEL AND SAND
43	75	CLAYBOUND GRAVEL AND SAND
75	132	CLAYSTONE
132	135.5	COARSE SANDS SOME GRAVEL
135.5	138	SOFTER CLAYSTONE
138	140	HARD CLAYSOTNE
140	141	CLAYBOUND PEA GRAVEL
141	144	SOFT BROWN CLAY

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

Company: VAN DYKEN DRILLING INC License No:WWC-380

Date 7/5/1994 Completed:

Site Name: US GEOLOGICAL SURVEY - KAMMERMAN Section 7: Well Test Data

Quarter Sections

GWIC ld: 133172

Section 1: Well Owner
Owner Name
KAMMERMAN DELBERT
Mailing Address
6911 KIMM ROAD
City State Zip Code
BOZEMAN MT 59715

Section 2: Location

Township Range Section

01S	03E	36	SE1/4 SW1/4 SV	W1/4 NW1/4
	County		Geoc	ode
GALLATIN				
Latitude	Long	itude	Geomethod	Datum
45.7094	111.3	3061	MAP	NAD27
Altitud	le	Method	Datum	Date
4658				
Addition		Blo	ock	Lot

Section 3: Proposed Use of Water

MONITORING (1)

Section 4: Type of Work

Drilling Method:

Section 5: Well Completion Date

Date well completed: Tuesday, January 01, 1952

Section 6: Well Construction Details

There are no borehole dimensions assigned to this well.

Casing

From	То		Diamete		Wall Thickr		Pre Rat	ssure ing	Joint	Туре
-1.7	18	5	8							STEEL
Comp	letic	on	(Perf/S	cre	en)					
				# o	f	Size o	f			
From	То	D	iameter	Ope	enings	Openi	ngs	Descri	otion	
4.5								PERFC	RATE)
15	113	B						CASING	G	
Annular Space (Seal/Grout/Packer)										

Ailliulai Space (Seal/Glout/Facker)

There are no annular space records assigned to this well.

Total Depth: 113 Static Water Level: 15.2 Water Temperature:

Unknown Test Method *

Yield _ gpm.
Pumping water level _ feet.
Time of recovery _ hours.
Recovery water level _ feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Section 8: Remarks

HOLE DRILLED BY CONTRACTOR FOR US GEOLOGICAL SURVEY. PRINCIPAL WATER BEARING ZONE 16-100 FEET BELOW LAND SURFACE. HOLE DRILLED TO DEPTH OF 882 FEET AND PLUGGED BACK TO 185 FEET BELOW LAND SURFACE.

Section 9: Well Log Geologic Source

120SDMS - SEDIMENTS (TERTIARY)

From	То	Description
0	23	SILT- SANDY- CALCAREOUS- TUFFACEOUS- BUFF; CONTAINS PEBBLES.
23	32	GRAVEL- SANDY- SILTY. GRAVEL IS COMPOSED OF PEBBLES DERIVED FROM TERTIARY BEDS AND VOLCANIC ROCKS.
32	65	SILT- SANDY- CALCAREOUS- BUFF; CONTAINS PEBBLES.
65		GRAVEL- SILTY. GRAVEL IS COMPOSED OF VOLCANIC AND METAMORPHIC ROCKS AND FRAGEMENTS OF TERTIARY BEDS
85	92	SAND- SILTY- POORLY SORTED- CALCAREOUS.
92	100	GRAVEL- SANDY; CONTAINS FRAGMENTS OF BUFF CLAY- STONE.
100	125	SILT- SANDY- CALCATEOUS- TUFFACEOUS- BUFF; CONTAINS FRAGMENTS OF SILSTONE.
125		CLAY- CALCAREOUS- TUFFACEOUS- LIGHT- BROWN; CONTAINS FRAGMENTS OF SILTSTONE.
155	174	SILT- SANDY- CLAYEY- CALCAREOUS- TUFFACEOUS- BUFF
174	180	GRAVEL- SANDY- CALCAREOUS- TUFFACEOUS
180	225	SILT- SANDY- CLAYEY- TUFFACEOUS- BUFF
225	232	SAND- SILTY- POORLY SORTED
232	248	SILT- SANDY- CALCAREOUS- TUFFACEOUS- BUFF
248	252	GRAVEL- SANDY
252	280	SILTSTONE- SANDY- CALCAREOUS-

TUFFACEOUS- BUFF

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

Name: Company:USGS License No:-Date 1/1/1952 Completed:

Site Name: US GEOLOGICAL SURVEY - KAMMERMAN

	ite Name: US GEOLOGICAL SURVEY - KAMMERMAN				
		ogy Records			
From	То	Description			
280	284	VOLCANIC ASH- GRAY			
284	305	GRAVEL- SANDY AND SILTY			
305	222	SAND AND SILT- CALCAREOUS; CONTAINS NUMEROUS DARK MINERALS			
323	354	SILTSTONE- SANDY- CALCAREOUS- TUFFACEOUS- BUFF; INTERBEDDED WITH TAN LAMINATED CLAYSTONE			
354	363	SAND- POORLY SORTED; CONTAINS PEBBLES			
363	385	SILTSTONE- CLAYEY- CALCAREOUS- TUFFACEOUS- BUFF			
385	428	SAND POORLY SORTED			
428	458	CLAYSTONE- SILTY- SLIGHTLY CALCAREOUS- BUFF			
458	461	VOLCANIC ASH- CALCAREOUS			
461	503	CLAY AND CLAYSTONE- SILTY- CALCAREOUS- TUFFACEOUS- TAN			
503	558	CLAY AND CLAYSTONE- SILTY- CALCAREOUS- LIGHT-GREEN			
558	590	CLAYSTONE- SILTY- PYRITIC- BLUISH-GREEN			
590	725	CLAY AND CLAYSTONE; PYRITIC- DARK-BLUE; FOSSILIFEROUS (OSTRACODES AT 715 FT)			
725	749	SAND- POORLY SORTED- COMPOSED CHIEFLY OF QUARTZ- GARNET- DARK MINERALS- CALCITE AND PYRITE GRAINS			
749	793	CLAY- SILTY- DARK-BLUE- CONTAINS GYPSUM FRAGMENTS WHICH PROBABLY OCCUR IN THIN LAYERS			
793		CLAY AND CLAYSTONE; DARK-BLUE- FOSSILIFEROUS (OSTRACODES AT 820 AND 835 FT); CONTAINS SILTSTONE FRAGMENTS			
859		SAND- ANGULAR- BLUISH; CONTAINS PEBBLES. SAND IS COMPOSED CHIEFLY OF QUARTZ- FELDSPAR AND GNEISS FRAGMENTS. THIS MATERIAL IS PROBABLY DERIVED FROM WEATHERED PRECAMBRIAN GNEISS. WELL PLUGGED BACK TO 185 FEET BELOW LAND SURFACE			

Site Name: LEEP ELDON Section 7: Well Test Data

GWIC Id: 159966

DNRC Water Right: C099519-00

Section 1: Well Owner

Owner Name

LEEP ELDON

Mailing Address

1930 BAXTER DR

City State Zip Code

BOZEMAN MT 59715

Section 2: Location

Township	Range	Section	Quarter Sections
01S	03E	13	NW1/4 SE1/4 SW1/4
C	ounty		Geocode

GALLATIN

Latitude	Longitude	Geomethod	Datum
45.746032	111.302572	TRS-SEC	NAD83
Altitude	Method	Datum	Date

Addition Block Lot

THE SETTLEMENT

Section 3: Proposed Use of Water

PUBLIC WATER SUPPLY (1)

Section 4: Type of Work

Drilling Method: ROTARY

Section 5: Well Completion Date

Date well completed: Wednesday, October 02, 1996

Section 6: Well Construction Details

Borehole dimensions From To Diameter

	. •	Diamoto.
0	21	16
0	441	8

Casing

			Wall	Pressure		
From	То	Diameter	Thickness	Rating	Joint	Туре
-2.5	282	8	0.280		WELDED	STEEL
8	405	6	0.280		WELDED	STEEL

Completion (Perf/Screen)

From	То		-	Size of Openings	Description
409	419	6		.06	SLOTS
419	430	6		.08	SLOTS

Annular Space (Seal/Grout/Packer)

			Cont.
From	То	Description	Fed?
0	22	BENTONITE	
403.3	404	K PACKER	

Total Depth: 441 Static Water Level: 113 Water Temperature:

Pump Test *

Depth pump set for test 400 feet.

290 gpm pump rate with _ feet of drawdown after 8

hours of pumping.

Time of recovery <u>0.25</u> hours. Recovery water level <u>113</u> feet.

Pumping water level 205.6 feet.

* During the well test the discharge rate shall be as uniform as possible. This rate may or may not be the sustainable yield of the well. Sustainable yield does not include the reservoir of the well casing.

Section 8: Remarks

WELL WAS DRILLED WITH FLUID CIRCULATION FROM 280-441 FIG K PACKER-403.3 TO 409 5IN BLANK TOP-404 TO 409 .050 SCREEN-409 TO 414 .060 SCREEN-414.25 TO 419 .080 SCREEN-419.5 TO 430 5IN BLANK-430 TO 441

Section 9: Well Log Geologic Source

Unassigned

То	Description
15	SILTY BROWN CLAY
60	DRY TIGHT GRAVELS
145	GRAVELS WITH OCCASIONAL CLAYS
165	STRATIFIED GRAVEL SANDSTONE AND CLAYSTONE
175	BROWN CLAYSTONE
176	SAND AND GRAVEL
214	SANDSTONE AND CLAYSTONE
215	FINE TO MEDIUM SAND
220	FINE TO COARSE SAND
250	CLAYBOUND SAND
268	CLAY
272	VERY FINE SAND
292	SANDSTONE WITH CLAY
299	COARSE SAND LOTS OF WATER
323	SOFT CLAY
	15 60 145 165 175 176 214 215 220 250 268 272 292

Driller Certification

All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.

Name:

Company:POTTS DRILLING INC

License No:WWC-512

Date 10/2/1996 Completed:

Site Name: LEEP ELDON GWIC Id: 159966

Additional Lithology Records

From	То	Description
323	328	HARD CLAY
328	345	SOFT WHITE BROWN CLAY
345	380	FIRM DENSE BROWN CLAY
380	385	SANDS TO COARSE GRAVEL
385	410	STRATIFIED SAND SANDY CLAY AND GRAVEL
410	430	MEDIUM SANDS TO GRAVELS
430	441	BROWN SILTY CLAY